# Converting between Western North American log scaling methods

## BC Firmwood and Northwest Log Rules Cubic

Neal Hart Jendro & Hart, LLC Sunriver, Oregon Timber Measurement Society Annual Meeting, April 2013

#### Today I'll discuss:

- 1 How Smalian's formula tends to overstate cubic volume where butt dia. is > 30% larger than top
- 2 How NWLR's 0.7 inch diameter correction factor overstates Scribner diameter bias in today's harvest
- 3 How Scribner's truncation of fractional diameters causes significant variability in NWLR Cubic volumes
- 4 That improving accuracy of NWLR Cubic requires adoption of unbiased diameter measurement

If BC Firmwood and Northwest Log Rules Cubic scales gave the <u>same</u> results...

The conversion between them would be the ratio of their measurement units, or  $35.315 \text{ cf/m}^3$ :

1 meter = 3.28084 feet

3.28084 feet cubed = <u>35.31467 cf</u>

If BC Firmwood and Northwest Log Rules Cubic scales gave the <u>same</u> results...



If BC Firmwood and Northwest Log Rules Cubic scales gave the <u>same</u> results...



What causes variance in the ratio between BC Firmwood and Northwest Log Rules Cubic Scales?

#### <u>BC Firmwood</u>

NW Log Rules

Formulas Smalian's

 $C \times L \times (d_{1^2} + d_{2^2})/2$ 

Diameter Nearest 2 cm

Length Nearest dm

Deducts Unsound Only

Two-End Conic

 $C \times L \times (d_{1^2} + d_{2^2} + (d_1 \times d_2))/3$ 

Scribner + 0.7 in.

Scribner + 1 ft \*

Unsound – Gross & Solid – Merch

<sup>\*</sup> Logs 17'+, Scribner + 0.5' for logs <17'

### What causes variance in the ratio between BC Firmwood and Northwest Log Rules Cubic Scales?

#### <u>BC Firmwood</u>

NW Log Rules

Formulas Smalian's

 $C \times L \times (d_{1^2} + d_{2^2})/2$ 

Diameter Nearest 2 cm

Length Nearest dm

Deducts Unsound Only

Two-End Conic

 $C \times L \times (d_{1^2} + d_{2^2} + (d_1 \times d_2))/3$ 

Scribner + 0.7 in.

Scribner + 1 ft \*

Unsound – Gross & Solid – Merch

<sup>\*</sup> Logs 17'+, Scribner + 0.5' for logs <17'

The difference between Smalian's and the Two-End Conic formula derives from their estimates of average diameter and is independent of log length (L):





#### Two-End Conic $C \times L \times (d_{1^2} + d_{2^2} + (d_1 \times d_2))/3$



Smalian exceeds Two-End Conic with decreasing log diameter and increasing difference between top and butt diameter

|            | If Top      | & Butt D     | ia. Diffe | erence is:          | 2               | inches:    |               |            |            |                                              |                 |
|------------|-------------|--------------|-----------|---------------------|-----------------|------------|---------------|------------|------------|----------------------------------------------|-----------------|
|            |             |              | Tv        | vo-End              | A               | ve.        | Smal          | ian        | Ave        | 9.                                           | % Diff.         |
| <u>Top</u> | <u>Butt</u> | <u>Ave</u> . | Co        | nic in <sup>2</sup> | <u><b>D</b></u> | <u>ia.</u> | ir            | <b>1</b> 2 | <u>Dia</u> | <u>.                                    </u> | in <sup>2</sup> |
| 6          | 8           | 7.0          |           | 49.3                | 7.              | 0          | 50            | .0         | 7.1        | L                                            | 1%              |
|            |             |              |           |                     |                 | 7 in       | 2             |            |            |                                              |                 |
|            |             |              |           |                     | <b>U.</b>       | / 111      |               |            |            |                                              |                 |
| 12         | 14          | 13.0         | 1         | 69.3                | <b>13</b>       | .0         | 170           | .0         | 13.0       | )                                            | 0%              |
|            |             |              |           |                     |                 |            |               |            |            |                                              |                 |
|            |             |              |           |                     |                 | 7 in       | 2             |            |            |                                              |                 |
|            |             |              |           |                     | U.              | / 111      |               |            |            |                                              |                 |
| 24         | 26          | 25.0         | 6         | 25.3                | 25              | .0         | 626           | .0         | 25.0       | )                                            | 0%              |
|            |             |              |           |                     |                 |            |               |            |            |                                              |                 |
|            |             |              |           |                     |                 |            |               |            |            |                                              |                 |
|            | 28 30       | 29.0         | 784       | 900                 | 840             | 841.3      | 3 29.0        | 84         | 2.0        | 29.0                                         | 0%              |
|            | 30 32       | 31.0         | 900       | 1024                | 960             | 961.3      | 31.0          | 96         | 2.0        | 31.0                                         | 0%              |
|            | 32 34       | 33.0         | 1024      | 1156                | 1088            | 1089.      | <b>3</b> 33.0 | 109        | 90.0       | 33.0                                         | 0%              |

Smalian exceeds Two-End Conic with decreasing log diameter and increasing difference between top and butt diameter

|             | If To      | o & Butt [    | Dia. Diffe | erence is:          | 4           | inches:    |               |                            |      |                       |
|-------------|------------|---------------|------------|---------------------|-------------|------------|---------------|----------------------------|------|-----------------------|
|             |            |               | Tv         | vo-End              | d A         | ve.        | Smal          | ian A                      | ve.  | % Diff.               |
| <u> Top</u> | <u>But</u> | t Ave         | . Co       | nic in <sup>2</sup> | 2 <u>D</u>  | <u>ia.</u> | <u>in</u>     | $\underline{\mathbf{D}}^2$ | ia.  | <u>in<sup>2</sup></u> |
| 6           | 10         | 8.0           |            | 65.3                | 8           | 1          | 68            | .0 6                       | 3.2  | 4%                    |
|             |            |               |            |                     | <b>= 2.</b> | 7 in       | 2             |                            |      |                       |
| 12          | 16         | 14.0          | 1          | 97.3                | 14          | .0         | 200           | .0 14                      | ł.1  | 1%                    |
|             |            |               |            |                     |             |            |               |                            |      |                       |
|             |            |               |            | <u></u>             | 2           | 7 in       | 2             |                            |      |                       |
|             |            |               |            | 1                   | 4.          | / 111      |               |                            |      |                       |
| 24          | 28         | 26.0          | 6          | 77.3                | 26          | .0         | 680           | 0 26                       | 5.1  | 0%                    |
|             |            |               |            |                     |             | į          |               |                            | :    |                       |
|             |            |               |            |                     |             |            |               |                            |      |                       |
|             | 28 3       | <b>2</b> 30.0 | 784        | 1024                | 896         | 901.3      | <b>3</b> 30.0 | 904.0                      | 30.1 | 0%                    |
|             | 30 3       | <b>4</b> 32.0 | 900        | 1156                | 1020        | 1025.      | <b>3</b> 32.0 | 1028.0                     | 32.1 | 0%                    |
|             | 32 3       | <b>6</b> 34.0 | 1024       | 1296                | 1152        | 1157.      | <b>3</b> 34.0 | 1160.0                     | 34.1 | 0%                    |

Smalian exceeds Two-End Conic with decreasing log diameter and increasing difference between top and butt diameter

| ı   | If To        | p & Butt l    | Dia. Diffe | rence is:           | 6          | inches: |               |                        |                 |                       |
|-----|--------------|---------------|------------|---------------------|------------|---------|---------------|------------------------|-----------------|-----------------------|
|     |              |               | Tv         | vo-End              | l A        | ve.     | Smal          | ian <i>A</i>           | Ave.            | % Diff.               |
| Top | But          | t Ave         | . Co       | nic in <sup>2</sup> | <u>D</u> i | ia.     | ir            | <u>1<sup>2</sup> ]</u> | Dia.            | <u>in<sup>2</sup></u> |
| 6   | 12           | 9.0           |            | 84.0                | 9.         | 2       | 90            | 0.0                    | 9.5             | <b>7%</b>             |
|     |              |               |            | 1                   |            | 0 in    | 2             |                        |                 |                       |
|     |              |               |            |                     | O.         | U III   |               |                        |                 |                       |
| 12  | 18           | <b>15.0</b>   | 2          | 28.0                | 15         | .1      | 234           | .0 1                   | <b>5.3</b>      | 3%                    |
|     |              |               |            |                     |            |         |               |                        |                 |                       |
|     |              |               |            |                     | 6          | O in    | 2.            |                        |                 |                       |
|     |              |               |            |                     | 0.         | 0 in    |               | l                      |                 |                       |
| 24  | 30           | 27.0          | 7          | 32.0                | 27         | .1      | 738           | .0 2                   | 7.2             | 1%                    |
|     |              |               |            |                     |            |         |               |                        |                 |                       |
|     |              |               |            |                     |            | :       |               |                        |                 |                       |
|     | 28 3         | <b>4</b> 31.0 | 784        | 1156                | 952        | 964.0   | 31.0          | 970.0                  | <b>0</b> 31.1   | 1%                    |
|     | <b>3</b> 0 3 | 33.0          | 900        | 1296                | 1080       | 1092.   | <b>0</b> 33.0 | <b>1098.</b>           | . <b>0</b> 33.1 | 1%                    |
|     | <b>32</b> 3  | <b>8</b> 35.0 | 1024       | 1444                | 1216       | 1228.   | <b>0</b> 35.0 | 1234.                  | . <b>0</b> 35.1 | 0%                    |

The amount Smalian exceeds Two-End Conic increases with the difference between top and butt diameter and with decreasing top diameter



### Adjusting for formula difference increases variance between BC Firmwood & Northwest Log Rules Cubic:



### What causes variance in the ratio between BC Firmwood and Northwest Log Rules Cubic Scales?

#### <u>BC Firmwood</u>

Smalian's

 $C \times L \times (d_{1^2} + d_{2^2})/2$ 

Diameter Nearest 2 cm

Length Nearest dm

Deducts Unsound Only

NW Log Rules

Two-End Conic

C x L x (d1² + d2² + (d1 x d2))/3

Scribner + 0.7 in.

Scribner + 1 ft \*

Unsound – Gross & Solid – Merch

<sup>\*</sup> Logs 17'+, Scribner + 0.5' for logs <17'

#### <u>BC Firmwood</u>

#### NW Log Rules

Lengths:
Unbiased – accurate
to nearest 1 dm (~3.9 in)

Scribner length + trim minimal bias
1.0 ft for logs 17'+
0.5 ft for logs <17'

Diameters:
Unbiased – accurate
to nearest 2 cm (~0.79 in)

Scribner (biased) – truncated fractional diameters plus 0.7 in

 Scribner's truncation of diameter fractions for logs with zero or even-inch ovality: 0.5 in.



Log with
"zero"
ovality
Butt & Top

 Scribner's truncation of diameter fractions for logs with zero or even-inch ovality: 0.5 in. Butt



Log with "even-inch" ovality
Butt & Top

• An additional 0.5" diameter truncation occurs for logs with odd-inch ovality e.g., 1", 3", etc.

Butt Top



Log with 1" ovality
Butt & Top

- Scribner's truncation of diameter fractions for logs with zero or even-inch ovality: 0.5 in.
- Scribner's additional 0.5" diameter truncation for logs with odd-inch ovality: <u>0.2 in.</u>

0.7 in.

Additional 0.2 inch bias correction assumes odd-inch ovality occurs almost half the time at *both* the Top and Butt

| Logs w        | ith 1/2     | 16 inch         | ovality       | r           |                |                 |                  |                |
|---------------|-------------|-----------------|---------------|-------------|----------------|-----------------|------------------|----------------|
| <u>Actua</u>  | l Diamet    | er (in <u>)</u> | Ī             | runcat      | ed Diame       | <u>ter</u>      | Amount           |                |
| <u>Narrow</u> | <u>Wide</u> | <u>Average</u>  | <u>Narrow</u> | <u>Wide</u> | <u>Average</u> | <u>Scribner</u> | <u>Truncated</u> | <u>Average</u> |
| 5.9375        | 6           | 5.96875         | 5             | 6           | 5.5            | 5               | 0.96875          |                |
| 6.0000        | 6.0625      | 6.03125         | 6             | 6           | 6              | 6               | 0.03125          |                |
| 6.0625        | 6.1250      | 6.09375         | 6             | 6           | 6              | 6               | 0.09375          |                |
| 6.1250        | 6.1875      | 6.15625         | 6             | 6           | 6              | 6               | 0.15625          |                |
| 6.1875        | 6.2500      | 6.21875         | 6             | 6           | 6              | 6               | 0.21875          |                |
| 6.2500        | 6.3125      | 6.28125         | 6             | 6           | 6              | 6               | 0.28125          |                |
| 6.3125        | 6.3750      | 6.34375         | 6             | 6           | 6              | 6               | 0.34375          |                |
| 6.3750        | 6.4375      | 6.40625         | 6             | 6           | 6              | 6               | 0.40625          | -0.5000        |
| 6.4375        | 6.5000      | 6.46875         | 6             | 6           | 6              | 6               | 0.46875          | 0.5000         |
| 6.5000        | 6.5625      | 6.53125         | 6             | 6           | 6              | 6               | 0.53125          |                |
| 6.5625        | 6.6250      | 6.59375         | 6             | 6           | 6              | 6               | 0.59375          |                |
| 6.6250        | 6.6875      | 6.65625         | 6             | 6           | 6              | 6               | 0.65625          |                |
| 6.6875        | 6.7500      | 6.71875         | 6             | 6           | 6              | 6               | 0.71875          |                |
| 6.7500        | 6.8125      | 6.78125         | 6             | 6           | 6              | 6               | 0.78125          |                |
| 6.8125        | 6.8750      | 6.84375         | 6             | 6           | 6              | 6               | 0.84375          |                |
| 6.8750        | 6.9375      | 6.90625         | 6             | 6           | 6              | 6               | 0.90625          |                |
| 6.9375        | 7.0000      | 6.96875         | 6             | 7           | 6.5            | 6               | 0.96875          |                |

| Logs w        | ith 1/8     | 3 inch o       | vality        |             |                |                 |                  |                |
|---------------|-------------|----------------|---------------|-------------|----------------|-----------------|------------------|----------------|
| <u>Actua</u>  | l Diamet    | <u>er (in)</u> | Ī             | runcat      | ed Diame       | <u>ter</u>      | Amount           |                |
| <u>Narrow</u> | <u>Wide</u> | <u>Average</u> | <u>Narrow</u> | <u>Wide</u> | <u>Average</u> | <u>Scribner</u> | <u>Truncated</u> | <u>Average</u> |
| 5.875         | 6           | 5.9375         | 5             | 6           | 5.5            | 5               | 0.93750          |                |
| 5.9375        | 6.0625      | 6              | 5             | 6           | 5.5            | 5               | 1.00000          |                |
| 6.0000        | 6.1250      | 6.0625         | 6             | 6           | 6              | 6               | 0.06250          |                |
| 6.0625        | 6.1875      | 6.125          | 6             | 6           | 6              | 6               | 0.12500          |                |
| 6.1250        | 6.2500      | 6.1875         | 6             | 6           | 6              | 6               | 0.18750          |                |
| 6.1875        | 6.3125      | 6.25           | 6             | 6           | 6              | 6               | 0.25000          |                |
| 6.2500        | 6.3750      | 6.3125         | 6             | 6           | 6              | 6               | 0.31250          |                |
| 6.3125        | 6.4375      | 6.375          | 6             | 6           | 6              | 6               | 0.37500          | -0.5313        |
| 6.3750        | 6.5000      | 6.4375         | 6             | 6           | 6              | 6               | 0.43750          | 0.5515         |
| 6.4375        | 6.5625      | 6.5            | 6             | 6           | 6              | 6               | 0.50000          |                |
| 6.5000        | 6.6250      | 6.5625         | 6             | 6           | 6              | 6               | 0.56250          |                |
| 6.5625        | 6.6875      | 6.625          | 6             | 6           | 6              | 6               | 0.62500          |                |
| 6.6250        | 6.7500      | 6.6875         | 6             | 6           | 6              | 6               | 0.68750          |                |
| 6.6875        | 6.8125      | 6.75           | 6             | 6           | 6              | 6               | 0.75000          |                |
| 6.7500        | 6.8750      | 6.8125         | 6             | 6           | 6              | 6               | 0.81250          |                |
| 6.8125        | 6.9375      | 6.875          | 6             | 6           | 6              | 6               | 0.87500          |                |
| 6.8750        | 7.0000      | 6.9375         | 6             | 7           | 6.5            | 6               | 0.9375           |                |

| Logs w        | /ith 3/1    | 16 inch         | ovality       | r           |                |                 |                      |                |
|---------------|-------------|-----------------|---------------|-------------|----------------|-----------------|----------------------|----------------|
| <u>Actua</u>  | l Diamet    | er (in <u>)</u> | Ī             | runcat      | ed Diame       | <u>ter</u>      | Amount               |                |
| <u>Narrow</u> | <u>Wide</u> | <u>Average</u>  | <u>Narrow</u> | <u>Wide</u> | <u>Average</u> | <u>Scribner</u> | <u>Truncated</u>     | <u>Average</u> |
| 5.8125        | 6           | 5.90625         | 5             | 6           | 5.5            | 5               | 0.90625              |                |
| 5.8750        | 6.0625      | 5.96875         | 5             | 6           | 5.5            | 5               | 0.96875              |                |
| 5.9375        | 6.1250      | 6.03125         | 5             | 6           | 5.5            | 5               | 1.03125              |                |
| 6.0000        | 6.1875      | 6.09375         | 6             | 6           | 6              | 6               | 0.09375              |                |
| 6.0625        | 6.2500      | 6.15625         | 6             | 6           | 6              | 6               | 0.15625              |                |
| 6.1250        | 6.3125      | 6.21875         | 6             | 6           | 6              | 6               | 0.21875              |                |
| 6.1875        | 6.3750      | 6.28125         | 6             | 6           | 6              | 6               | 0.28125              |                |
| 6.2500        | 6.4375      | 6.34375         | 6             | 6           | 6              | 6               | 0.34375              | -0.5625        |
| 6.3125        | 6.5000      | 6.40625         | 6             | 6           | 6              | 6               | 0.40625              | 0.3023         |
| 6.3750        | 6.5625      | 6.46875         | 6             | 6           | 6              | 6               | 0.46875              |                |
| 6.4375        | 6.6250      | 6.53125         | 6             | 6           | 6              | 6               | 0.53125              |                |
| 6.5000        | 6.6875      | 6.59375         | 6             | 6           | 6              | 6               | 0.5 <del>9</del> 375 |                |
| 6.5625        | 6.7500      | 6.65625         | 6             | 6           | 6              | 6               | 0.65625              |                |
| 6.6250        | 6.8125      | 6.71875         | 6             | 6           | 6              | 6               | 0.71875              |                |
| 6.6875        | 6.8750      | 6.78125         | 6             | 6           | 6              | 6               | 0.78125              |                |
| 6.7500        | 6.9375      | 6.84375         | 6             | 6           | 6              | 6               | 0.84375              |                |
| 6.8125        | 7.0000      | 6.90625         | 6             | 7           | 6.5            | 6               | 0.90625              |                |

| Logs w        | rith 1 in   | nch ova        | lity          |             |                |                 |                  |                |
|---------------|-------------|----------------|---------------|-------------|----------------|-----------------|------------------|----------------|
| <u>Actua</u>  | l Diamet    | <u>er (in)</u> | Ţ             | runcat      | ed Diame       | <u>ter</u>      | Amount           |                |
| <u>Narrow</u> | <u>Wide</u> | <u>Average</u> | <u>Narrow</u> | <u>Wide</u> | <u>Average</u> | <u>Scribner</u> | <u>Truncated</u> | <u>Average</u> |
| 5             | 6           | 5.5            | 5             | 6           | 5.5            | 5               | 0.50000          |                |
| 5.0625        | 6.0625      | 5.5625         | 5             | 6           | 5.5            | 5               | 0.56250          |                |
| 5.1250        | 6.1250      | 5.625          | 5             | 6           | 5.5            | 5               | 0.62500          |                |
| 5.1875        | 6.1875      | 5.6875         | 5             | 6           | 5.5            | 5               | 0.68750          |                |
| 5.2500        | 6.2500      | 5.75           | 5             | 6           | 5.5            | 5               | 0.75000          |                |
| 5.3125        | 6.3125      | 5.8125         | 5             | 6           | 5.5            | 5               | 0.81250          |                |
| 5.3750        | 6.3750      | 5.875          | 5             | 6           | 5.5            | 5               | 0.87500          |                |
| 5.4375        | 6.4375      | 5.9375         | 5             | 6           | 5.5            | 5               | 0.93750          | -0.9688        |
| 5.5000        | 6.5000      | 6              | 5             | 6           | 5.5            | 5               | 1.00000          | 0.9000         |
| 5.5625        | 6.5625      | 6.0625         | 5             | 6           | 5.5            | 5               | 1.06250          |                |
| 5.6250        | 6.6250      | 6.125          | 5             | 6           | 5.5            | 5               | 1.12500          |                |
| 5.6875        | 6.6875      | 6.1875         | 5             | 6           | 5.5            | 5               | 1.18750          |                |
| 5.7500        | 6.7500      | 6.25           | 5             | 6           | 5.5            | 5               | 1.25000          |                |
| 5.8125        | 6.8125      | 6.3125         | 5             | 6           | 5.5            | 5               | 1.31250          |                |
| 5.8750        | 6.8750      | 6.375          | 5             | 6           | 5.5            | 5               | 1.37500          |                |
| 5.9375        | 6.9375      | 6.4375         | 5             | 6           | 5.5            | 5               | 1.43750          |                |
| 6.0000        | 7.0000      | 6.5            | 6             | 7           | 6.5            | 6               | 0.5              |                |

### Scribner diameter truncation for round logs and logs with ovality in increments of 1/16 in

|                  | Average           |
|------------------|-------------------|
| Ovality (in)     |                   |
| Ovality (in)     | <u>Truncation</u> |
| Zero & even-inch | 0.50000           |
| 1/16             | 0.50000           |
| 1/8              | 0.53125           |
| 3/16             | 0.56250           |
| 1/4              | 0.59375           |
| 5/16             | 0.62500           |
| 3/8              | 0.65625           |
| 7/16             | 0.68750           |
| 1/2              | 0.71875           |
| 9/16             | 0.75000           |
| 5/8              | 0.78125           |
| 11/16            | 0.81250           |
| 3/4              | 0.84375           |
| 13/16            | 0.87500           |
| 7/8              | 0.90625           |
| 15/16            | 0.93750           |
| 1 & odd-inch     | 0.96875           |
| All Ave.         | 0.72059           |

Assuming an equal probability of logs in each class, average truncation is 0.72 in. and 50% have odd-inch ovality at *both* Top and Butt

Given Scribner diameter truncation just discussed...

What's the impact of Scribner diameter bias on the difference between BC Firmwood and Northwest Log Rules Cubic?

### Range of Scribner diameter bias relative to BC Firmwood scale:

|                       | Metr            | ic Dian | neter | in cer    | ntime                        | ters is | :    |          |            |            |          |          |
|-----------------------|-----------------|---------|-------|-----------|------------------------------|---------|------|----------|------------|------------|----------|----------|
|                       | For Ro          | ound Lo | gs:   |           | For Logs With Ovality of 1": |         |      |          |            |            |          |          |
| Where Scribner        | N/ o+           |         | 865   | 1 1 1 3 h | Nar                          | row     | Wi   | de       | KA TI      | (13/15/A)  |          |          |
| Diameter (Inches) is: | Me <sup>†</sup> | Scr     |       | <u>er</u> |                              |         | 3C I | Fir:     | <u>m</u> v | <u>/00</u> | <u>d</u> | <u>s</u> |
| 7                     | 18              | - 6     | "     |           |                              |         | 16   | <u> </u> | 20         | cm         |          |          |
| •                     | 2(              |         |       |           |                              |         |      |          |            |            |          | -        |
| •                     | •               | 3       | 2"    |           |                              |         | 82   | ) _      | 86         | cm         |          |          |
| •<br>30               | 75              | ( )     | 30    | , CC      | 1 / 0                        | /0      | 70   | 04       | /0         | OU         | 20       | 40       |
| 31                    | 78              | 82      | 39    | 41        | 78                           | 82      | 82   | 84       | 80         | 84         | 40       | 42       |
| 32                    | 82              | 84      | 41    | 42        | 82                           | 84      | 84   | 86       | 84         | 86         | 42       | 43       |

|          | 40' Log v | v/1" in : | 10' Taper  |  |
|----------|-----------|-----------|------------|--|
| Scribner | BC Firm.  | NWLR      | BC Firm.   |  |
| Diameter | Minimum   |           | Maximum    |  |
| 6        | 15.2      | 16.8      | 21.4       |  |
| 0        | -11%      | 10.0      | 22%        |  |
| 7        | 18.2      | 20.8      | 24.9       |  |
| /        | -15%      | 20.0      | 17%        |  |
| 8        | 21.4      | 25.3      | 28.7       |  |
| 0        | -18%      | 25.5      | 12%        |  |
| •        | •         | •         | •          |  |
|          | •         | •         | •          |  |
| 20       | 222.1     | 2226      | 244.6      |  |
| 30       | -5%       | 233.6     | 5%         |  |
| 21       | 233.2     | 2404      | 268.1      |  |
| 31       | -6%       | 248.1     | <b>7</b> % |  |
| 22       | 256.2     | 262.0     | 280.3      |  |
| 32       | -3%       | 263.0     | 6%         |  |

|          | 20' Log | w/1" in : | <u> 10' Taper</u> |
|----------|---------|-----------|-------------------|
| Scribner | ВС      | NWLR      | ВС                |
| Diameter | Minimum |           | Maximum           |
| 6        | 5.5     | 6.5       | 8.2               |
| O        | -18%    | 0.5       | 21%               |
| 7        | 6.8     | 8.3       | 10.6              |
| /        | -22%    | 0.5       | 22%               |
| 8        | 9.0     | 10.3      | 12.4              |
| 0        | -15%    | 10.5      | 17%               |
| •        | •       | •         | •                 |
| •        | •       | •         | •                 |
| 30       | 105.6   | 109.6     | 116.5             |
| 30       | -4%     | 109.0     | 6%                |
| 21       | 111.0   | 1167      | 125.1             |
| 31       | -5%     | 116.7     | 7%                |
| 22       | 119.3   | 1220      | 131.0             |
| 32       | -4%     | 123.9     | 5%                |







### Ave. Scribner diameter bias by diameter class ~500,000 logs exported from BC to US in 2000



#### Variance in cubic volume using 0.55" instead of 0.7" correction for Scribner diameter bias:



#### To sum things up:

- 1 Smalian's formula tends to overstate cubic volume where butt dia. is > 30% larger than top
- 2 NWLR's 0.7 inch bias correction factor overstates Scribner diameter bias for today's harvest
- 3 Scribner diameter truncation causes significant variability in NWLR Cubic volumes
- 4 Improving accuracy of NWLR Cubic requires adoption of unbiased measurement protocol

#### Some recommendations:

#### BC Firmwood:

Adopt Two-End Conic formula

#### NW Log Rules Cubic:

- Adopt unbiased diameter measurement protocol
- Adopt more representative correction factor for Scribner diameter bias

#### Questions or Comments?

Neal Hart Jendro & Hart, LLC Sunriver, Oregon

#### Thank You

Neal Hart Jendro & Hart, LLC Sunriver, Oregon