Comparison of log scaling under different national standards in Europe

Udo Hans Sauter
Jörg Staudenmaier

Department of Forest Utilisation
Forest Research Institute of
Baden-Wuerttemberg

Forest Research Institute of Baden-Wuerttemberg (FVA)

- Located in Freiburg (Black Forest)
- Research institute of the forest administration
- Regional, national and international research and consulting tasks and projects

FVA - Department of Forest Utilisation

Harvesting logistics

Bioenergy from forests short rotation agroforestry

Manual measurement in the forest (1)

Single log measuremet:

- Long tradition
- Carried out by forest workers
- Using mechanical calliper and tape
- Measuring unit: m^{3} (in Germany since 1875)

Background

Manual measurement in the forest (2)

Single log measuremet:

- Mid diameter:
- two perpendicular measurements (minimum and maximum)
- taken in the middle of the log length
- Truncation to full centimeters
- Log length:
- Truncation to agreed steps (e.g. $10 \mathrm{~cm}, 50 \mathrm{~cm}$)

Calculating the volume

- Basis: cylinder volume

\rightarrow Standard for all types of wood

Background

Considering legal requirements

- 1969: EU directive (68/89) for the intra-European approximation of laws in terms of roundwood scaling and grading was transfered into a national law (Forst-HKL, Forst-HKS).
- For more than 40 years this law formed the main basis for scaling and grading of roundwood in Germany.
- 31.12.2008: Suspension of the EU directive (68/89)
\rightarrow Since 01.01.2015: „Rahmenvereinbarung für den Rohholzhandel in Deutschland" (RVR) as a frameworg agreement on a private basis
\rightarrow www.rvr-deutschland.de

Raw material

- Only softwood:
- Spruce
- Pine
- Fir
- Douglas fir
- Larch
- Short logs (< 6 m)
- Long logs (6-20 m)

Electronic measurement

Technology

- 2D Measurement Systems
- infrared or / and ultrasound
- normally 2 perpendicular diameters
- fixed measuring directions (geometry of the system)

Technology

- 3D Measurement Systems (Laser-Triangulation)
- Normally 4 laser sources / sensor devices
- Full contour scan

Log length

Electronic measurement

Diameter: Different approaches

Determining the real contour

Simulating a mechanical calliper

Electronic measurement

Diameter: Different approaches

Volume differences: simulated calliper - real contour
(2 perpendicular mid diameters, no roundings, fixed measurement planes,

$$
n=139.662, \text { mean }=3,5 \%)
$$

Electronic measurement

Different standards in Central Europe

	Austria	Germany
Standard	National standard (ÖNorm L1021)	Framework agreement (Rahmenvereinbarung Werksvermessung)

Different standards in Central Europe

	Austria	Germany
Standard	National standard (ÖNorm L1021)	Framework agreement (Rahmenvereinbarung Werksvermessung)
Mid diameter position	Middle of the effective log length	Middle of the accounted log length

Electronic measurement

Different standards in Central Europe

	Austria	Germany
Standard	National standard (ÖNorm L1021)	Framework agreement (Rahmenvereinbarung Werksvermessung)
Mid diameter position	Middle of the effective log length	Middle of the accounted log length
Diameter measurement planes	2 perpendicular, variable planes	2 perpendicular, fixed planes

Electronic measurement

Different standards in Central Europe

	Austria	Germany
Standard	National standard (ÖNorm L1021)	Framework agreement (Rahmenvereinbarung Werksvermessung)
Mid diameter position	Middle of the effective log length	Middle of the accounted log length
Diameter measurement planes	2 perpendicular, variable planes	2 perpendicular, fixed planes (e.g. vertical / horizontal)
Rounding of diameters	Double truncation (to whole centimeters)	Single or double truncation (to whole centimeters)

Electronic measurement

Different standards in Central Europe

Electronic measurement

Relative volume differences

(Reference: effective volume, $\mathrm{n}=139.662$)

Reference: Effective volume

Electronic measurement

Relative volume differences
(Reference: effective volume, $n=139.662$)

Electronic measurement

Relative volume differences by diameter classes
(Reference: effective volume, $n=139.662$)

Electronic measurement

Automated determination of log quality

- measurable quality parameters can be used for automatic grading:

- sweep, taper (and ovality)

Non-measurable quality parameters

- parameters which can not yet be measured automatically
- can be used for grading if there is a photo-optical documentation system (e.g. konts, rot, insects)

Electronic measurement

Electronic measurement

Electronic measurement

Electronic measurement

Electronic measurement

© 38
Scome

Slice:
圆 L FA
MiCROTEC

Thank you!

Dr. Udo Hans Sauter udo.sauter@forst.bwl.de

Dr. Jörg Staudenmaier joerg.staudenmaier@forst.bwl.de

Department of Forest Utilisation Forest Research Institute of Baden-Wuerttemberg Wonnhaldestrasse 4
D-79100 Freiburg

www.fva-bw.de

Approaches for determining the log volume

Contour diameter

- Mid diameter: mean of 180 single measurements
- No roundings

Minimal contour diameter

- Mid diameter: 2 perpendicular contour diameters, one is the minimum diameter out of 180 contour diameters
- Rounding down to full centimeters

Sectionalised volume

- Dividing the log into sections of 50 cm
- 2 perpendicular contour diameters per section
- Calculation the volume for each section
- No rounding
- Log volume = sum of all section volumes

