4FRI Digital Timber Project

Mike Shettles (Reporting), USFS Timber Measurements Society April 6-8, 2016 Couer d'Alene, Idaho

4FRI Overview

- Four Forest Restoration Initiative
- 2.4 million acres across the Apache-Sitgreaves, Coconino, Kaibab and Tonto National Forests
- Multiple stakeholders
- The Nature Conservancy (TNC) mediators between USFS and stakeholders
- Primary goal includes mechanically treating up to 50,000 acres per year during a 20-year period
- Primarily low-value small-diameter trees and biomass
 - Tough for purchasers to sustain themselves economically
 - Created a push to increase the efficiency in planning and implementation

Designation by Prescription (DxP)

- <u>Major theme</u>: let's speed up the process and stop marking timber.
- DxP is a prescription process based upon an "end condition", where the trees aren't marked with paint; purchasers get to decide which trees to cut, so long as the end condition is met (e.g. leave 40 BA of pine and 20 BA left of oak, or a residual canopy cover of 60%).
 - 75% of 4FRI units will not be marked.
- But, DxP is wrought with uncertainties—it was originally meant for simple prescriptions, but the prescriptions on the 4FRI aren't even close to simple, making it very hard to <u>verify</u> prescriptions are being met.
- Hence, this digital restoration project—making DxP more easily administrated while still helping make the project economically viable for the purchasers doing the actual harvesting.

Problem \rightarrow Solution

- Need to speed things up by not marking trees with paint → Tablet Marking
- 2. Ensuring spatially-explicit "patchy" prescriptions are executed → In-cab, GPS-enabled Tablet Technology
- 3. Sale administration/monitoring →Aerial LiDAR

Tablet Marking

- Aim is to increase the efficiency of marking crews
- <u>Hardware:</u>IPads
 - GPS receivers are the off-the-shelf
- Software: ESRI ArcGIS online and Collector App
 - Download maps and collect feature information in the field

Tablet Marking Cont'd

- Field crews designate spatially where tree clumps and groups should be placed and generally how the structure in those areas should look.
- Tablet marking is the only of the 3 aforementioned solutions that has been tested operationally.

Tablet Marking Cont'd

- To provide an even greater level of information for operators, the digitally marked polygons from handheld tablets can be further labeled before being uploaded to GPS-enabled in-cab tablets
- The operator uses this digitallymarked map to navigate within a stand and to assist with decisions regarding placement and structure of clumps/groups and interspace

In-cab, GPS-enabled Tablet Technology

- Aim is to ensure spatially-explicit patchy prescriptions are met on the ground
- <u>Hardware:</u> XPLORE ruggedized tablets
 - High-grade antennae mounted to the top of the cab
- <u>Software:</u> TimberGuide from Genesis Industries
 - Unit map, aerial images, roads, unit boundaries, tablet-marked polygons, etc.
 - Records productivity (trees cut/hour) and UTM coordinates of each cut-tree

Aerial LiDAR

- Aim is to make DxP sale administration/monitoring easier
- Phase 1 LiDAR collected for the 4FRI EIS area
 - Flown in 2014
- <u>Software</u>: LiFOREST
 - Allows user to use published algorithms for calculating several key forest metrics such as percent canopy cover.
 - Users can also calculate other forest parameters, such as basal area, by including ground sample data, and then creating localized regression equations for their project areas.

Aerial LiDAR Cont'd

 Using the UTM coordinates, individual trees can be segmented out of the LiDAR point cloud, allowing for more rapid monitoring of during and posttreatment results

- TNC and Northern Arizona University working together on this
- TNC is also working with T&D in San Dimas to develop diameter measurement capabilities using a camera system on the head of a fellerbuncher that would capture and process an image prior to cutting
 - Strengthen relationships between the trees' coordinates and the estimate of canopy cover removed from the LiDAR dataset

Pilot Project

- Clark Task Order (1,684 acres)
- Three marking methods compared:
 - Traditional Leave-Tree Mark
 - 680 acres
 - DxP
 - 677 acres
 - Digital Marking
 - 327 acres
- Operational results to-date are for the tablet-marking only.
 - In-cab technology with a harvester was operationally tested fon an Arizona State Forestry project in November and December 2015.
 - Productivity results will help guide 4FRI operations in the near future

Productivity Outcomes-No Surprises

^Potential to test once harvesting operations occur

- * Currently awaiting harvesting operations for testing
- + Currently being assessed by USFS

Areas of Concern

Inaccuracies

- GPS on the tablets—locations of the polygons
- UTM coordinates of each tree
- o LiDAR data itself
- Estimate of updated stand structure from post-treatment LiDAR data
- Will any of these uncertainties derail the project? Or, do these even matter as far as the final outcome?

Increased sale administration time

- Additional field visits to ensure compliance
- Final map produced post-treatment
 - Could this be a source of strife with the stakeholders if inaccuracies in the map result in differences with what's actually been done on the ground?

- Hand-held tablets have potential to save time and reduce costs for Timber Sale Administration activities.
- Hand held tablets also fosters the ability to compare prescriptions/marking to what occurred on the ground, in a much more rapid fashion.
 - In-cab results and LiDAR algorithms/relationships still pending

??Questions??

OSU SAR

Credit goes to Travis Wooley of The Nature Conservancy for many of the materials for this presentation