Measuring Stockpile Volumes... the Easy Way

by:

Jon Aschenbach Resource Supply, LLC

Timber Measurement Society Meeting October 28, 2008

Stockpiles can be...

Wood Chip Piles
Hog Fuel
Chunk Piles
Rock & Gravel
Dirt or Sand
Anything in a pile!

Common Methods To Measure Volume

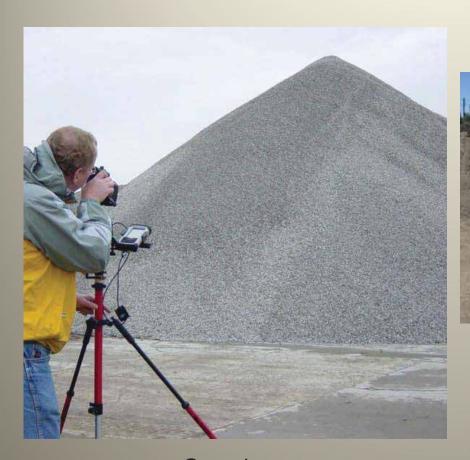
- 1. Outright guesses
- 2. Flyover with LIDAR on Monthly basis
- 3. Engineer Measurement with Laser Scanner
- 4. Walk the pile with GPS unit
- 5. Laser Rangefinders with MapSmart Software

Why Do We Measure Stockpiles?

- Inventory control
- Planning
- Cost Accounting

Chip Piles

Coos Bay, Oregon



Longview, Washington

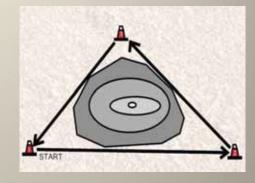
Roseburg Resources Chip Piles North of Coos Bay, Oregon

Rock Piles

Asphalt dug up from a street project

Gravel

Equipment


- TruPulse 360B Laser Rangefinder
 - MapSmart Software
 - Pocket PC (ruggedized)
 - Tripod and traffic safety cones
- Impulse 200 Laser Rangefinder
 - MapSmart Software
 - Pocket PC (ruggedized)
 - Angle Encoder
 - Tripod and traffic safety cones

Procedure

- 1. Walk the pile laying out cones
- 2. Choose a starting point
- 3. Shoot points on the pile
- 4. Shoot next instrument location
- 5. Shoot the pile from each new location until the entire surface has been measured.
- 6. Transfer your field data to your PC.

Key Points When Shooting Pile

- Shoot the top of the pile carefully (don't miss)
- Shoot the base (toe) carefully
- Get plenty of shots of the pile while at the instrument point
- Have plenty of cones available (with reflector strip)

Advantages of This System

- One person operation
- It's fast; 100,000 yards^3 measured in 2 hours
- Much safer than walking on pile with GPS
- Accuracy usually within 5% of engineer
- Works with small to huge piles
- Works with piles next to walls
- Measure in inclement weather (except fog)
- Export data as DXF file, Text File, Contour Map

TruPulse 360B

- Built-in compass and laser rangefinder
- Takes shots as fast as you can hit fire button
- Can be affected by large metal such as pulp mills
- Less expensive than Impulse & Angle Encoder
- Minimal Weight

TruPulse Issues Around Pulp Mills

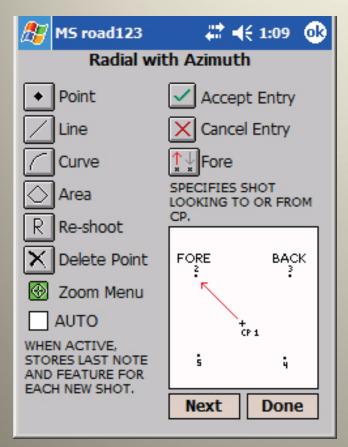
- Compass problems
 - Start away from pulp mill
 - Calibrate compass often
- Safety issues with mill equipment
- Access to all sides of pile may be limited
- Crowned edges require walking on pile

Pulp Mill near I-5 in Albany, OR

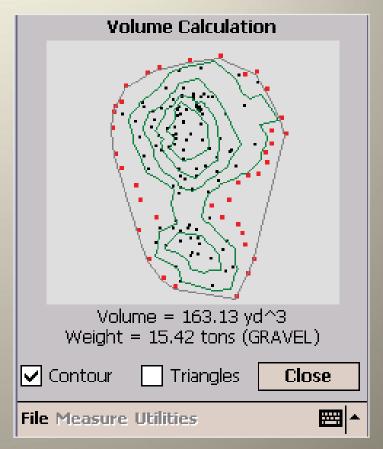
Impulse 200 & Angle Encoder

- More accurate than TruPulse 360B
- More expensive
- No compass, so local attraction not a problem

Heavier to pack around


MapSmart Measurement Methods

Overview of the Four Methods


The table below provides an overview of the four measurement methods.

Method	Requirements	Compatible Hardware	
Radial with Azimuth	Proper care and procedure when using a compass in the vicinity of magnetic objects such as cars, utilities, buildings, etc.	MapStar Compass Module Impulse 200 TruPulse 200 / 200B TruPulse 360B	
Radial with Angle	Higher accuracy and/or need to work in the vicinity of metal or magnetic objects.	MapStar Angle Encoder Impulse 200 TruPulse 200 / 200B	
Range Triangulation	Able to occupy (stand over) every feature to be mapped. Only have access to a laser, no MapStar module.	Impulse 200 TruPulse 200 / 200B	
Baseline Offset	Able to walk a straight line from one end of the site to the other. Only have access to a laser, no MapStar module.	Impulse 200 TruPulse 200 / 200B	

MapSmart Screens

Radial With Azimuth Method

Volume Available in Field

Data Recorded for Each Shot

File: SW_Hogfuel Pile

Date: 10/28/2008 11:45 AM
Method: Radial with Azimuth
Volume: 29,545 Cubic Yards

Project note: TMS

	-	۹	
ľ)	
	-		

•	Point	Χ	Υ	Z Type	Name	Note
•	1	0.00	0.00	0.00 Point		Origin
•	2	-5.65	76.63	0.12 Point	t	toe
•	3	-3.34	74.22	0.05 Point		toe
•	4	8.15	57.74	0.21 Point		toe
•	5	15.12	57.05	0.06 Poin	t	toe
•	6	20.98	53.82	0.04 Poin	t	toe
•	7	27.62	51.30	0.00 Poin	t	toe
•	8	40.16	59.45	-0.01 Poin	it	toe
•	9	40.03	62.11	1.30 Poin	t	pile
•	10	40.73	72.88	4.13 Poir	nt	pile
•	11	38.73	72.80	6.02 Poir	nt	pile
•	12	44.65	91.13	7.25 Poir	nt	pile
						-

For every shot, a set of data is saved. This is great for anyone wanting an audit trail of the process.

Conclusion

- Using the MapSmart software with either the Impulse 200 & LTI Angle Encoder or the TruPulse 360B is very cost effective
- Equipment outlay is approximately \$4,000.00 for the TruPulse solution and \$6,000.00 for the Impulse/Angle Encoder option
- It is a much better alternative than LIDAR Flyovers, guessing, or GPS
- One person operation