TMS

Thursday 2:15 PM April 7, 2011

Log Yard Inventory Measurements

2011 Update

John Calkins,
Check Scaler/ Log Quality
Simpson Lumber Company
Tacoma, Shelton, Longview Washington

Original Goals

1. Improve the Physical Log Deck Measure for more Accurate Log Accounting.
2. Take More Measurements using One Person.
3. Devise a Procedure that is Easy to Understand and Replicate.
4. Devise a Procedure that is Acceptable to Accountants and Auditors.

Mountains to Measure

(I Have Found)
 There are 3 Accepted Ways to Inventory Log Decks

- 1. Closed Deck: Knowing the exact volumes put into each deck.
- 2. Load Averages: Counting the Load Receipts in each deck.
- 3. Square Foot Deck Factors: Log Deck Volumes/ Log Deck Square Foot Surface Area.

This is
 The Square Foot Deck Factor Method

Recognize the Geometric Shapes

Use the Simple Geometric Areas of Right

 Triangles and Rectangles to figure the Square Foot Surface Area of any Log Deck.

Vantage Points are Key

Learn Why Decks are Built the Way They Are. Spot the Geometric Shapes.

Find the Area of these Right Triangles and Rectangles for the SqFt. Measurement

This method is the easiest to understand even under complex shapes.

So at what point do we stop measuring the finer detail and use reasonable incremental measurements?

This is an accepted method used to visually fold the triangle ends up in the field then measure at regular intervals to average the top rectangle shape of the deck.

I used a camera and graphs to determine the size of decks by painting physical marks on the decks to line up with the graph.

I broke down the decks into smaller geometric shapes to see how much error there is in visually creating the larger Right Triangle and Rectangle shapes.

Clinometer Procedure

Clinometer and 50' Tape

Clinometer Worksheet Method

	A	B	c	D	E	F	G
1	Method 1						
2	Deck Measurements		Clinometer Measurements				Height
3	Deck Parts	ClinDistToDeck	Down -		Below Eye	Above Eye	
4	Average Height	25	10	17	4.4	7.6	12.1
5		25	5	24	2.2	11.1	13.3
6		25	3	25	1.3	11.7	13.0
7		25	1	29	0.4	13.9	14.3
8		25	6	28	2.6	13.3	15.9
9		25	2	28	0.9	13.3	14.2
10		25	5	20	2.2	9.1	11.3
11		25	6	19	2.6	8.6	11.2
12		25	5	26	2.2	12.2	14.4
13							
14							
15	Average Deck Height						13.3
16	Big Rectangle Length	390					
17	Triangle 1 Length	34	17				
18	Triangle 2 Length	18	9				
19	Total Deck Length		416		Total Deck	Square Feet:	5,529.1

Need More Measurements

44						
45						

Constantly Changing

Inacceable

TruePulse360 Rangefinder

TP 360 - Nomad - GPS

The TP 360 appeared be the ultimate device for my project

Understand the Devices

Section 5-Measurement Modes

Section 5 - Measurement Mode: When you power $O N$ the TruPulse, the last used M T to display the previous or neext Meascurement Numents that the TmPulse can toke For info see page 37

- = MEASURED $\cdots=$ CALCULATE

The basic steps for taking any distance measuremen

1. Look through the eyepiece and use the crossh
2. Press-and-hold The LASER status indica will remain active for a maximm of 10 secon - If the target is not acquired in the 10 -se
3. Once the measurement is displayed, release indicating the measurement was downloaded. until you press any button or the wit powers

Section 5-Measurement Modes
Page 37
(i) During the Height Routine:

- Press to re-shoot the previous point
- Press to exat the Height Routme. long as you hold 8 , the inclination reading is displaye your aiming point changes. The measured inclination is aiming point when you release 3
- When the height result is displayed, just press 9 to sta $\frac{1}{2}$ repeat the steps.

Missing Line Routine

The Missing Line Routine calculates distances and angles to describe the elationship between two points in hree-dimensional space (compecting vector). This routine is ideal for span lengths, rensote slope determinations, and changes in elevation from one location.

The simple routine prompts you to ake two shots to targets: "Shot 1" and Shot $2^{\text {" }}$ The TruPulse uses the results to alculate five variables between the two oints: slope distance, inclination, azimuth, onizontal distance, and vertical distance as shown in Figure \#23

- The laser is not active while measuring the ANG1 and A जapworu -
 1 SPLTIT HV 18.5 F

1	SPLTIT HV	18.5 F	14.5 D	-14.8 D	$19 \mathrm{~F}^{*} 43$
2	SPLTIT HV	18 F	13.1 D	-14.8 D	$19 \mathrm{~F}^{*} 4$
3	SPLTI HV	18 F	11.6 D	-14.7 D	$18.5 \mathrm{~F}^{*} 4$

$\begin{array}{lrrrr}\text { SPLTIT HV } & 18 \mathrm{~F} & 11.6 \mathrm{D} & -14.7 \mathrm{D} & 18.5 \mathrm{~F}^{*} 48\end{array}$ | | | | | |
| :--- | ---: | ---: | ---: | ---: |
| SPLTIT HV | 22.5 F | 3.2 D | -15.4 D | $12.01 \mathrm{~F} * 7 \mathrm{~B}$ | $\begin{array}{lrrrr}\text { SPLTIT HV } & 22.5 \mathrm{~F} & 9.8 \mathrm{D} & -9.5 \mathrm{D} & 23 \mathrm{~F}^{*} 43\end{array}$ | SPLTIT HV | 23.5 F | 7 D | -7.7 D | $23.5 \mathrm{~F}^{*} 4 \mathrm{D}$ |
| :--- | ---: | ---: | ---: | ---: |
| SPLTI | 26.5 F | 7.5 D | -2.3 D | $26.5 \mathrm{~F}^{*} 49$ | SPLTIT HV 24.01F $\quad 1.5 \mathrm{D} \quad-2.3 \mathrm{D} \quad 26.5 \mathrm{~F}^{*} 49$

SPLTIT HV	24 F	6.8 D	-4.9 D	$24 \mathrm{~F} * 49$

10	SPLTIT HV	24 F	6.8 D	-4.9 D

1 SPLTI HV 17.01 F 13.6 D $\quad-4.5 \mathrm{D}$ 17.01 F*7F
2 SPLTI HV HV 17.01 F 13.6 D $\quad-4.5 \mathrm{D} ~ 17.01 \mathrm{~F}^{*} 7 \mathrm{~F}$
16 F $14.2 \mathrm{D}-3.8$
$16 F^{*} 76$
保
12 SPLTIT HV 1
14.5 F 14.9

TP360 Data Collection

-

Deck Measurement Tools

HP200 Data Comm

HP200 Data Collection

TruPulse Datastring in an Excel Sheet

K51				$-\int f_{x}$								
	A	B	C	D	E	F	G	H	1	J	K	L
1	\$PLTIT	HV	18.5 F	F	14.5	D	-14.8	D	19	F*43		
2	SPLTIT	HV	18 F	F	13.1	D	-14.8 D	D	19	$\mathrm{F}^{*} 45$		
3	SPLTIT	HV	18 F	F	11.6	D	-14.7 D	D	18.5	$\mathrm{F}^{*} 4 \mathrm{~B}$		
4	\$PLTIT	HV	12.01 F	F	3.20	D	-15.4 D	D	12.01	$\mathrm{F}^{*} 78$		
5	SPLTIT	HV	22.5 F	F	9.8	D	-9.5	D	23	$F^{*} 43$		
6	SPLTIT	HV	23.5 F	F	7	D	-7.7	D	23.5	$\mathrm{F}^{*} 4 \mathrm{D}$		
7	SPLTIT	HV	26.5 F	F	7.5	D	-2.3	D	26.5	$\mathrm{F}^{*} 49$		
8	SPLTIT	HV	24.01 F	F	4.1 d	D	-4.4	D	24.01	F* 4 F		
9	SPLTIT	HV	24 F	F	6.8	D	-4.9	D	24	F*49		
10	SPLTIT	HV	24 F	F	9.4	D	-4.8	D	24.5	$\mathrm{F}^{*} 4 \mathrm{E}$		
11	SPLTIT	HV	17.01 F	F	13.6	D	-4.5	D	17.01	$\mathrm{F}^{*} 7 \mathrm{~F}$		
12	SPLTIT	HV	16 F	F	14.2	D	-3.8	D	16	$F * 76$		
13	SPLTIT	HV	14.5 F	F	14.9	D	-4.6	D	14.5	F*74		
14	SPLTIT	HV	14 F	F	15.1	D	-5.7	D	14	F*7D		
15	\$PLTIT	HV	15.01 F	F	15.2	D	-5.9 D	D	15.01	$\mathrm{F}^{*} 70$		
16	SPLTIT	HV	24.01 F	F	17	D	-4.6	D	24.01	$\mathrm{F}^{*} 7 \mathrm{E}$		
17	SPLTIT	HV	18.5 F	F	18.4	D	-3.8	D	18.5	F*7C		
18	SPLTIT	HV	28.5 F	F	349.9	D	-0.7	D	28.5	$\mathrm{F}^{*} 4 \mathrm{~A}$		
19	SPLTIT	HV	19.01 F	F	351.6	D	-3.8	D	19.01	$\mathrm{F}^{*} 40$		
20	SPLTIT	HV	18.5 F	F	352.6	D	-3.9	D	18.5	$\mathrm{F}^{*} 42$		
21	SPLTIT	HV	18.5 F	F	351.4	D	-4.1	D	18.5	$\mathrm{F}^{*} 4 \mathrm{C}$		
22	SPLTIT	HV	18.01 F	F	349.1	D	-4.3	D	18.01	$\mathrm{F}^{*} 42$		
23	SPLTIT	HV	16 F	F	347.4	D	-5.2	D	16	F*49		
24	SPLTIT	HV	5.5 F	F	9.9	D	-4	D	5.5	F*4E		
25	SPLTIT	HV	5.5 F	F	9.1	D	-4.2	D	5.5	F*44		
26	SPLTIT	HV	5 F	F	6.9	D	-5.4 D	D	5	F*44		
27	SPLTIT	HV	5 F	F	4	D	-5.4	D	5	$\mathrm{F}^{*} 4 \mathrm{~F}$		
28	SPLTIT	HV	5 F	F	2.2	D	-4.9	D	5	$\mathrm{F}^{\prime \prime} 47$		
29	SPLTIT	HV	5 F	F	1.1	D	-4.9	D		$\mathrm{F}^{*} 47$		
30	SPLTIT	HV	23.01 F	F	5.1	D	-4.9	D	23.01	$\mathrm{F}^{*} 43$		
31	SPLTIT	HV	23.5 F		356.6	D	-2.6 D	D	23.5	F*48		
32	SPLTIT	HV	23 F		352.5	D	-2.9 D	D	23	F*40		

TP360 Worksheet

S5					
LGTH	DOWN	UP		HEIGHT	SqFt
-	3.5	(3.5)	-		
14.0	3.5	6.0	9.5	67	
8.0	3.5	5.5	9.0	74	
23.0	3.5	(3.5)	-	104	
TOTAL				$\mathbf{2 4 4}$	

S7 LGTH	DOWN	UP		HEIGHT	SqFt
-	5.5	(5.5)	-		
27.0	5.5	4.5	10.0	135	
23.4	5.5	5.0	10.5	240	
23.4	6.0	3.5	9.5	234	
23.4	6.0	4.0	10.0	228	
23.4	5.5	6.0	11.5	251	
23.4	4.5	5.5	10.0	251	
23.4	5.0	5.0	10.0	234	
23.4	6.0	7.0	13.0	269	
23.4	6.0	7.5	13.5	310	
42.0	6.0	$\mathbf{(6 . 0)}$	-	221	
TOTAL				2,372	

Voice Data Collection and HP200 on the Crane

C1S NEW LGTH	DOWN	UP	HEIGHT	SqFt
-	4.0	(4.0)	-	
17.0	4.0	9.0	13.0	110.5
18.0	4.0	9.5	13.5	238.5
18.0	4.5	7.0	11.5	225.0
18.0	5.0	8.5	13.5	225.0
18.0	5.0	12.0	17.0	274.5
18.0	4.5	12.5	17.0	306.0
18.0	4.5	10.5	15.0	288.0
24.0	4.5	(4.5)	-	180.0
149.0				
TOTAL				1,847.5

UNDER
 CONSTRUCTION in 2009

C1S NEW			
73.0	8.0	8.3	66.2
71.5	9.5	8.3	78.6
68.0	13.0	8.3	107.6
69.5	11.5	8.3	95.2
67.0	14.0	8.3	115.9
69.5	11.5	8.3	95.2
70.0	11.0	8.3	91.1
68.0	13.0	8.3	107.6
68.0	13.0	8.3	107.6
65.5	15.5	8.3	128.3
65.5	15.5	8.3	128.3
68.5	12.5	8.3	103.5
66.0	15.0	8.3	124.2
64.0	17.0	8.3	140.7
66.5	14.5	8.3	120.0
65.5	15.5	8.3	128.3
70.0	11.0	8.3	91.1
73.5	7.5	8.3	62.1
COUNT	18.0		
Lgth	149.0		
Int	8.3		
SqPt			1,891.5

More is Better

| 44 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 45 | | | | | |

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & & \square \\
\hline & & & & & & & & & \\
\hline
\end{array}
$$

Crane Operator Interface

Mounted a TP200

Crane Data

Crane Data

N	0	AB	AC	AD	AE	AF	AG
	Row Labels	21-Feb	28-Feb	7-Mar	14-Mar	21-Mar	28-Mar
	C2S	10,671	10,659	10,877	4,391		
	C 3 N	2,082		4,624	5,944	5,768	8,341
	man	A 4 mon	Anmon	An 15	An-n.	mam	$\cdots \rightarrow 0$

Understanding the Rangefinder Datastring

Allegro and TP360

Allegro with Bluetooth

Key Logger to Accept Data

Excel Mobile

Setup Spreadsheet

Measure Triangle Lengths

Fire the Laser

Measure Rectangle Lengths

Measure Rectangle Heights

Excel Data String

B2 $\quad f_{x}=$ TRIM $($ RI	$=$ TRIM(RIGHT(SUBSTITUTE(TRIM(LEFT(SUBSTITUTE(","\&A2\&REPT(",",6),",",REPT(CHAR(32),LEN(A2)+6),COLUMN(B2)),LEN(A2)+6															
A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q
54 LH TN					AZ		INC		HYP			S4 LH TN				
\$pltit,hv,25.00,f,244.50,d,17.30,d,26.00,f*56	\$pltit	hv	25.00	f	244.50	d	17.30	d	26.00	$\mathrm{f}^{*} 56$		LGTH	DOWN	UP	HEIGHT	SqFt
\$pltit,hv,44.00,f,297.10,d,-5.80,d,44.00,f*4a	\$pltit	hv	44.00	f	297.10	d	-5.80	d	44.00	$f * 4 a$						
\$pltit,ml,34.80,f,298.40,d,-19.20,d,36.90,f*6b	\$pltit	ml	34.80	f	298.40	d	-19.20	d	36.90	$\mathrm{f}^{*} 6 \mathrm{~b}$		-	(5.4)	5.4	-	
R1	R1											34.80	(5.4)	7.8	13.2	229.8
\$pltit,hv,25.00,f,244.80,d,17.30,d,26.00,f*5b	\$pltit	hv	25.00	f	244.80	d	17.30	d	26.00	f*5b		39.4	(4.9)	4.6	9.6	449.1
\$pltit,hv,277.00,f,159.20,d,1.20,d,277.00,f* 6 b	\$pltit	hv	277.00	f	159.20	d	1.20	d	277.00	$f^{*} 6 \mathrm{~b}$		39.4	(5.4)	5.5	10.9	403.0
\$pltit,ml,276.10,f,154.00,d,-0.40,d,276.10,f*51	\$pltit	ml	276.10	f	154.00	d	-0.40	d	276.10	$\mathrm{f}^{*} 51$		39.4	(5.8)	4.2	10.0	411.6
TS	TS											39.4	(5.6)	3.3	8.9	372.6
\$pltit,hv,48.00,f,328.10,d,8.90,d,49.00,f*6f	\$pltit	hv	48.00	f	328.10	d	8.90	d	49.00	$\mathrm{f}^{*} 6 \mathrm{f}$		39.4	(6.5)	4.1	10.6	383.4
\$pltit,hv,29.50,f,302.50,d,-2.40,d,29.50,f*48	\$pltit	hv	29.50	f	302.50	d	-2.40	d	29.50	f*48		39.4	(4.1)	6.9	11.0	424.4
\$pltit,ml,25.30,f,178.30,d,-19.10,d,26.80,f*69	\$pltit	ml	25.30	f	178.30	d	-19.10	d	26.80	f*69		39.4	(4.5)	6.7	11.2	437.2
H0	H0											25.30	(4.5)	4.5	-	141.7
\$pltit,hv,25.00,f,245.10,d,17.50,d,26.00,f*55	\$pltit	hv	25.00	f	245.10	d	17.50	d	26.00	$\mathrm{f}^{*} 55$						
\$pltit,hv,28.00,f,242.10,d,-10.90,d,28.50,f*72	\$pltit	hv	28.00	f	242.10	d	-10.90	d	28.50	f*72		TOTAL				3,252.9
\$pltit,hv, $26.00, f, 250.20, d, 10.10, d, 26.50, f * 57$	\$pltit	hv	26.00	f	250.20	d	10.10	d	26.50	$f * 57$						
\$pltit,hv,29.00,f,242.40,d,-9.60,d,29.50,f*40	\$pltit	hv	29.00	f	242.40	d	-9.60	d	29.50	f*40						
\$pltit,hv, 34.50,f,254.40,d,9.00,d,35.00,f*6d	\$pltit	hv	34.50	f	254.40	d	9.00	d	35.00	$f * 6 d$						
\$pltit,hv,27.50,f,248.80,d,-11.10,d,28.00,f*77	\$pltit	hv	27.50	f	248.80	d	-11.10	d	28.00	f*77						
\$pltit,hv,30.00,f,249.60,d,8.00,d,30.00,f*66	\$pltit	hv	30.00	f	249.60	d	8.00	d	30.00	$\mathrm{f}^{*} 66$						
\$pltit,hv,31.50,f,242.50,d,-10.50,d,32.00,f*79	\$pltit	hv	31.50	f	242.50	d	-10.50	d	32.00	f*79						
\$pltit,hv, 34.00,f,249.50,d,5.60,d,34.00,f*6e	\$pltit	hv	34.00	f	249.50	d	5.60	d	34.00	f*6e						
\$pltit,hv,26.50,f,245.60,d,-11.90,d,27.00,f*72	\$pltit	hv	26.50	f	245.60	d	-11.90	d	27.00	$f * 72$						
\$pltit,hv,42.50,f,194.80,d,5.50,d,42.50,f*63	\$pltit	hv	42.50	f	194.80	d	5.50	d	42.50	f*63						
\$pltit,hv,60.01,f,186.10,d,-6.10,d,61.01, $* * 42$	\$pltit	hv	60.01	f	186.10	d	-6.10	d	61.01	f*42						
\$pltit,hv, 127.50,f,169.70,d,3.10,d,127.50,f*6c	\$pltit	hv	127.50	f	169.70	d	3.10	d	127.50	$\mathrm{f}^{*} 6 \mathrm{c}$						
\$pltit,hv,155.50,f,168.20,d,-1.50,d,155.50,f*43	\$pltit	hv	155.50	f	168.20	d	-1.50	d	155.50	$f * 43$						
\$pltit,hv,175.50,f,166.30,d,2.20,d,175.50,f*65	\$pltit	hv	175.50	f	166.30	d	2.20	d	175.50	$f * 65$						
\$pltit,hv,64.01,f,178.00,d,-4.00,d,64.01, $* * 40$	\$pltit	hv	64.01	f	178.00	d	-4.00	d	64.01	f*40						

The Ultimate Test

- Compare Crane Data to Handheld Data

Now What?

- 1. I'm able to capture the data into my handheld device for my use.
- 2. I'm able to hand the Laser for either voice or direct data collection to a Accountant that does not have any experience and get the same results.
- 3. I'm able to recognize that I'm the only one willing to do all of this each week.

Consistent Measurements

TruePulse to the Rescue

Log Deck

Measurably Superior

New
 Create new job

Turn on Bluetooth or Tether with Serial Cable

\% Start	
$\begin{aligned} & \text { Sunday } \\ & \text { April 03, } 2011 \end{aligned}$	10:19 AM
Owner: JOHN CALKINS (360) 490-9739	
Wiffi: off	8:on
Getting Started	
Notasts	
Colendar	Contacts

Start the TruePulse LogDeck Program

Select Utilities

Select the Comm Port and Test Fire

Log Deck

Configure Serial Port

Laser datai:
$\$$ PLTIT,HV, $0.00, F, 84,80, D,-80.80, D, 1,00, F^{*} 4$
Comm port: Bluetooth on COM4 \rightarrow

Done

Select New Job

Log Deck

Log Deck

Measurably Superior

New	Create new job
Old	Open existing job

Create a Job Name and Id

Log Deck

New Job Settings
loh name: DECK_MEAS_2011_04_04

- Yard: SWF

Species:
DF Douglas Fir

Cancel Start

The Grade Sort and Species are Customizable

Select Orentation

Log Deck

$+4 \times 410223$

Select Measurement Method

Fire the Laser

The Data String is accepted into the Program

The Program walks you through the Deck Measurement Process

You have control over the individual deck data

Last Minute Program Update

File Utilities Help

Species:

LMPU Pg 2

LMPU Pg 3

Begin the deck survey at the left end of the deck. Measure from the Origin up to the top of the backstop.

Previous Next

File Utilities Help

File Utilities Help

LMPU Pg 4

File Utilities Help

LMPU Pg 5

What Have I learned?

- 1. We can get very accurate Square Foot Log Deck Measurements with the New Technologies.
- 2. We have to develop the procedures that are repeatable and acceptable.
- 3. We need to be persistent and be able to explain what is needed for others to utilize what we have learned.

END

