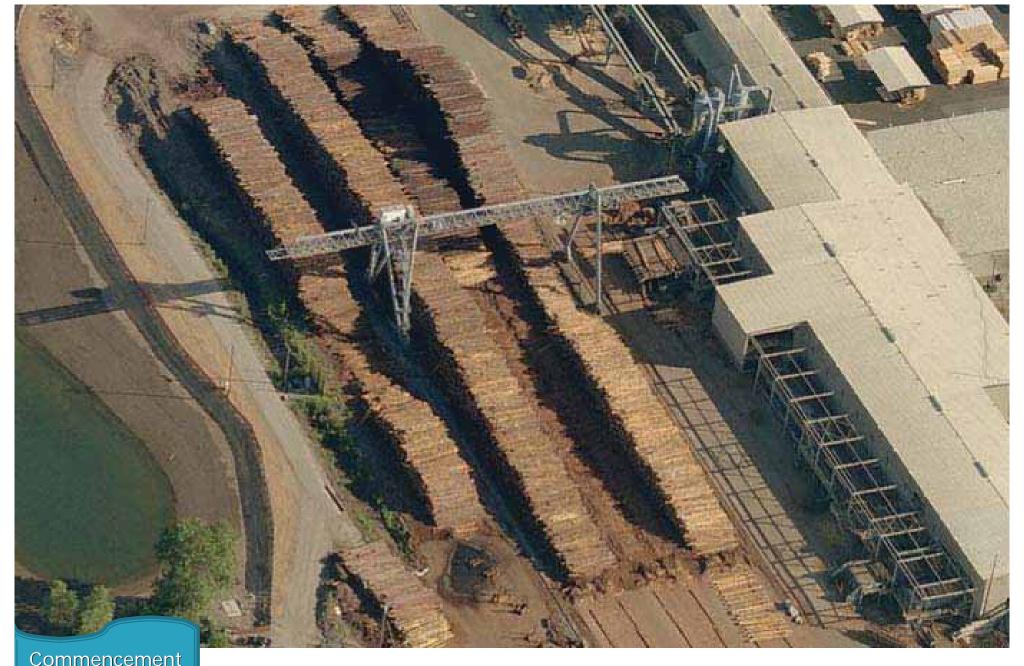
TMS
Thursday 2:15 PM April 7, 2011


Log Yard Inventory Measurements

2011 Update

John Calkins, Check Scaler/Log Quality Simpson Lumber Company Tacoma, Shelton, Longview Washington

Original Goals

- Improve the Physical Log Deck Measure for more Accurate Log Accounting.
- 2. Take More Measurements using One Person.
- Devise a Procedure that is Easy to Understand and Replicate.
- 4. Devise a Procedure that is Acceptable to Accountants and Auditors.

Commencement Bay Operations

The Challenge

Mountains to Measure

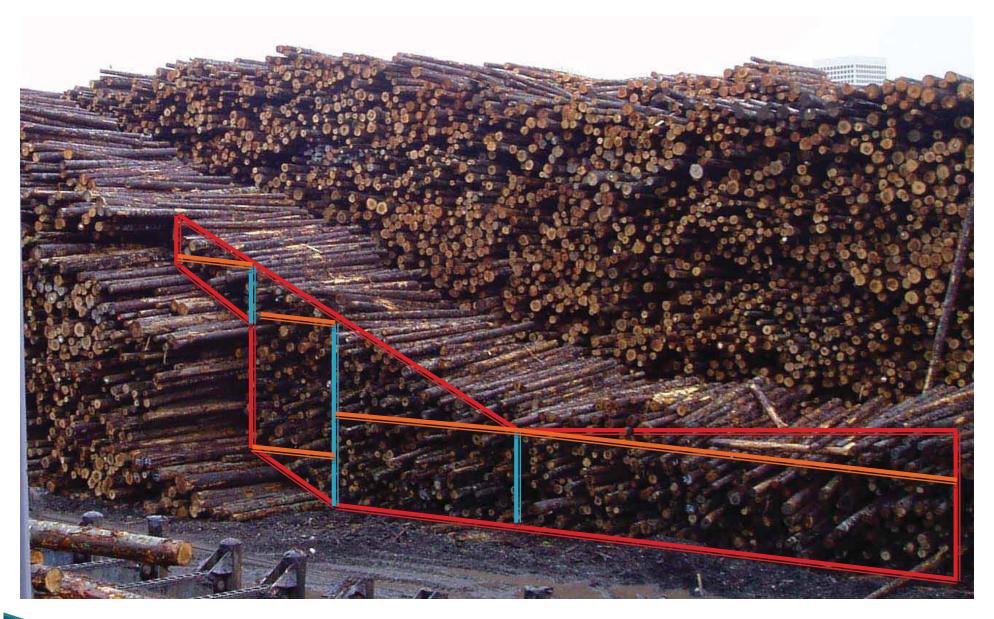
(I Have Found) There are 3 Accepted Ways to Inventory Log Decks

- 1. Closed Deck: Knowing the exact volumes put into each deck.
- 2. Load Averages: Counting the Load Receipts in each deck.
- Square Foot Deck Factors: Log Deck Volumes/Log Deck Square Foot Surface Area.

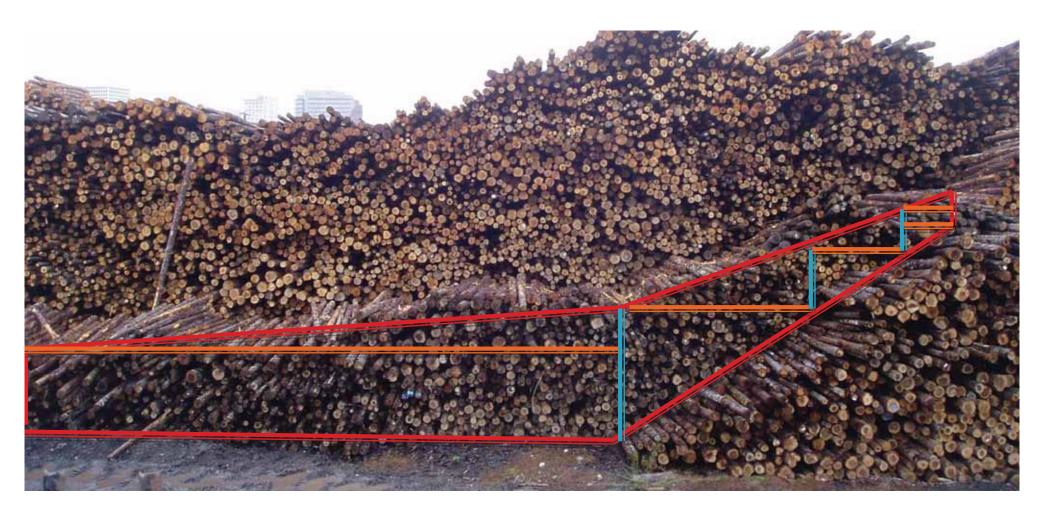
This is The Square Foot Deck Factor Method

Recognize the Geometric Shapes

Use the Simple Geometric Areas of Right Triangles and Rectangles to figure the Square Foot Surface Area of any Log Deck.

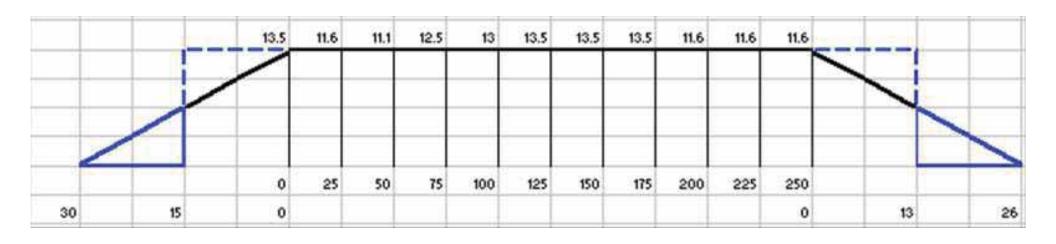


Vantage Points are Key

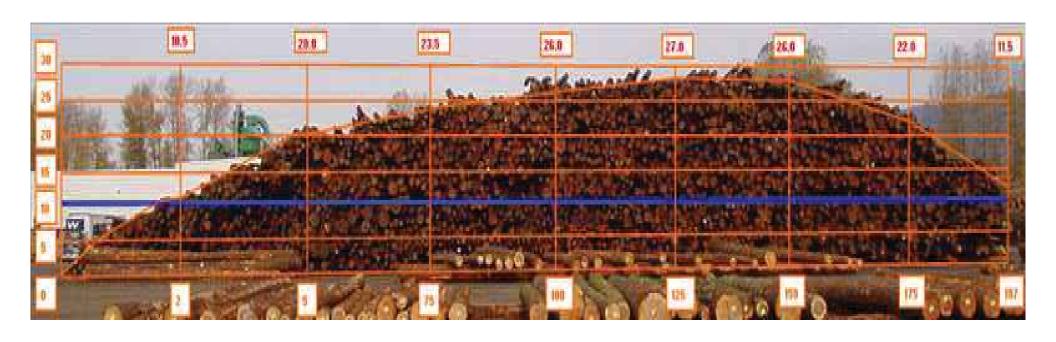


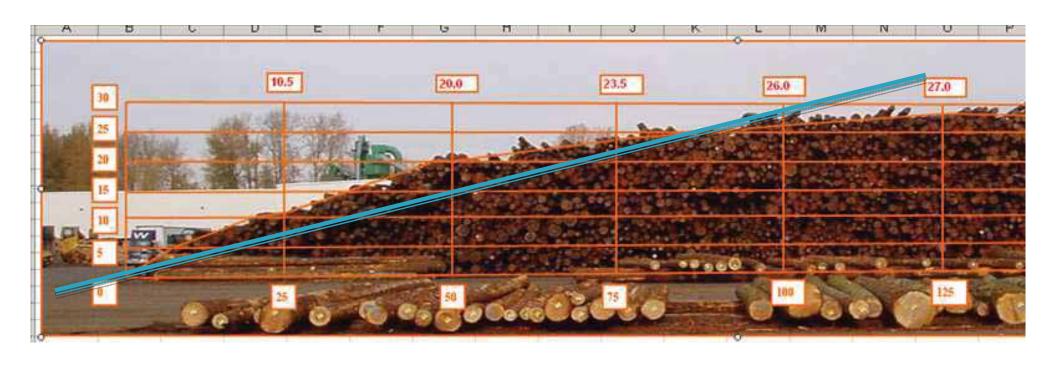
Learn Why Decks are Built the Way They Are. Spot the Geometric Shapes.

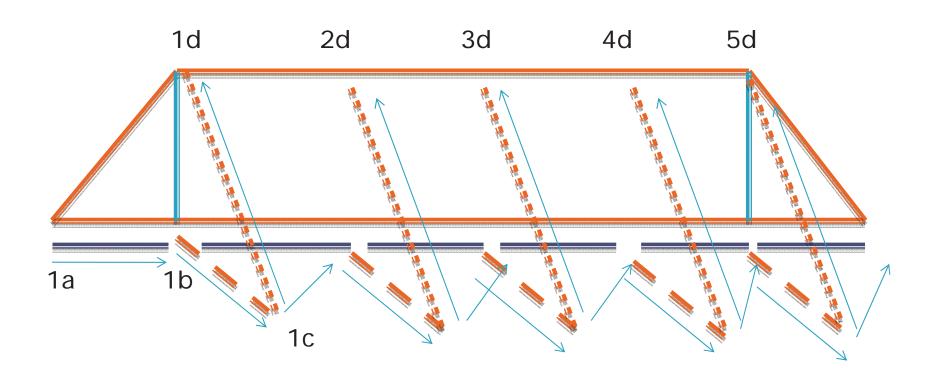
Find the Area of these Right Triangles and Rectangles for the SqFt. Measurement


This method is the easiest to understand even under complex shapes.

So at what point do we stop measuring the finer detail and use reasonable incremental measurements?

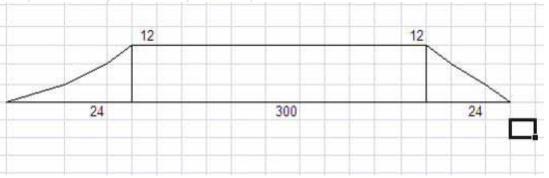



This is an accepted method used to visually fold the triangle ends up in the field then measure at regular intervals to average the top rectangle shape of the deck.

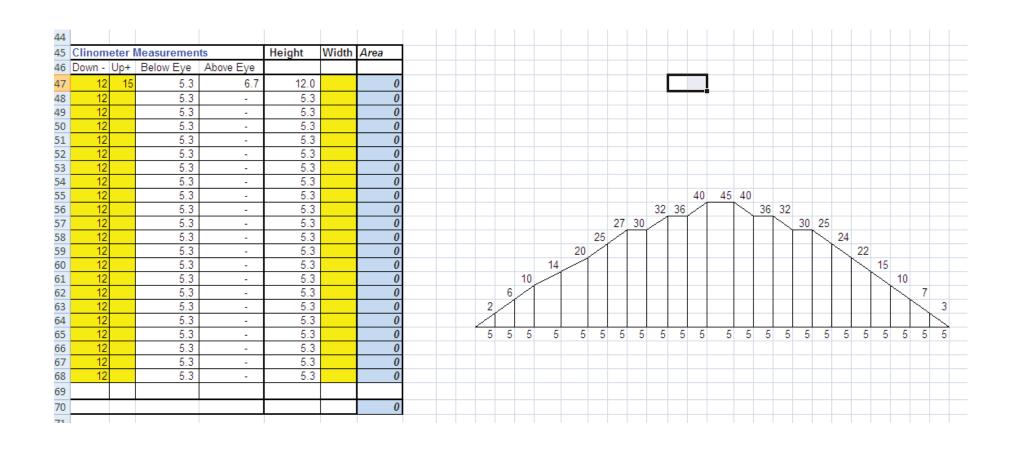

I used a camera and graphs to determine the size of decks by painting physical marks on the decks to line up with the graph.

I broke down the decks into smaller geometric shapes to see how much error there is in visually creating the larger Right Triangle and Rectangle shapes.

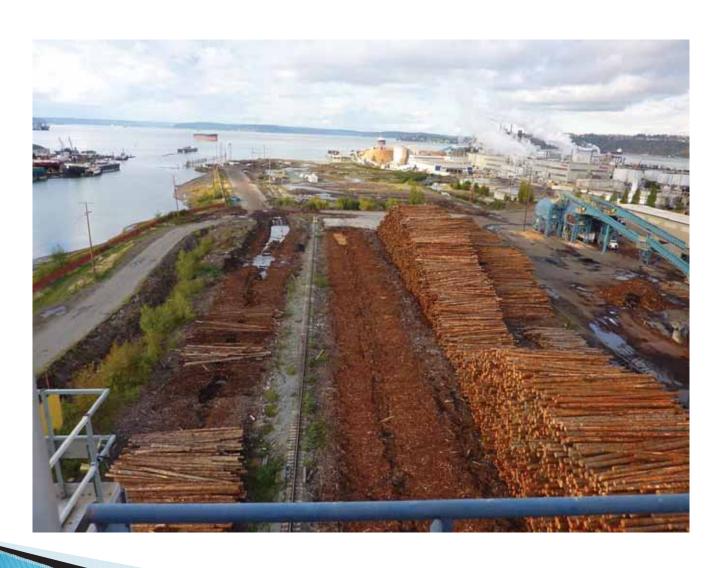
Clinometer Procedure



Clinometer and 50' Tape



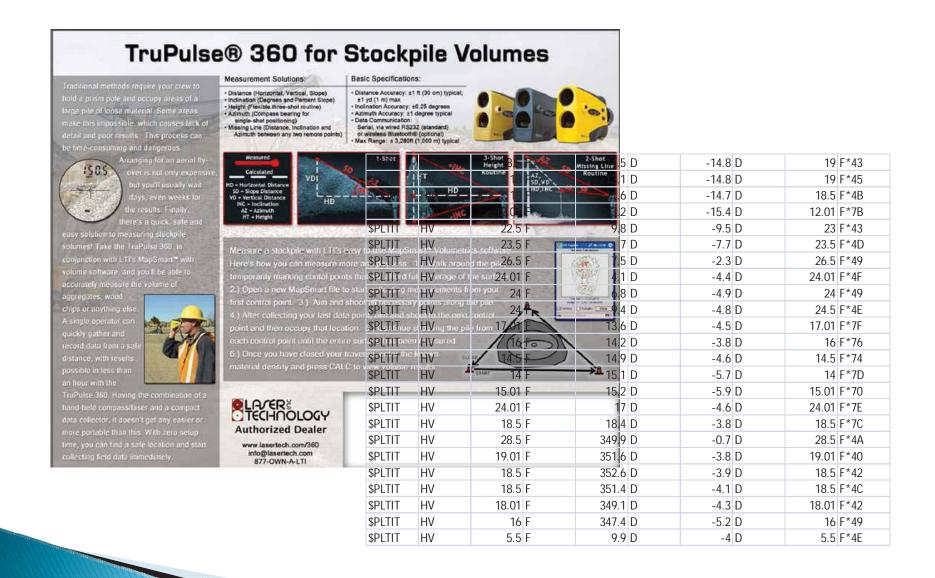
Clinometer Worksheet Method

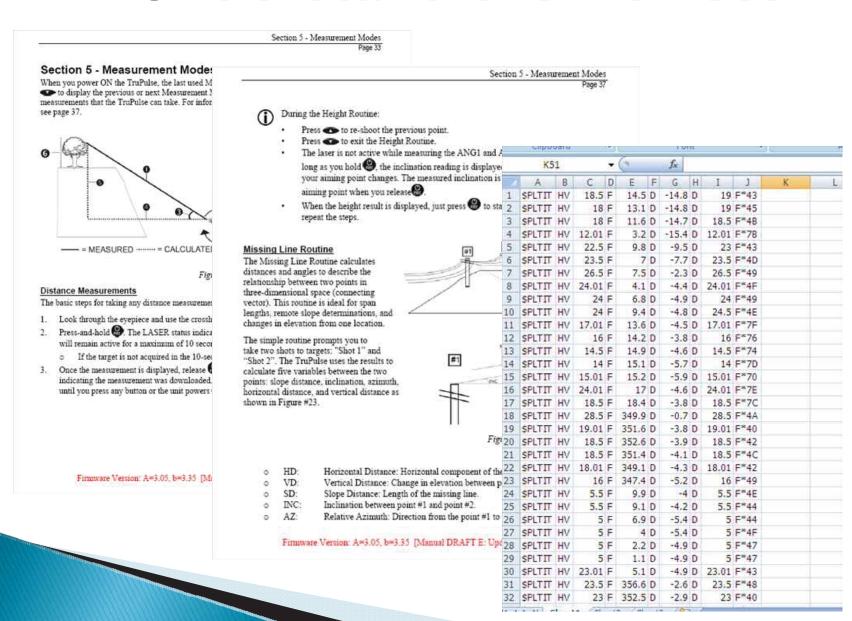

	A	В	С	D	E	F	G
1	Method 1						
2	Deck Measurements		CI	inom	eter Measur	ements	Height
3	Deck Parts	ClinDistToDeck	Down -	Up+	Below Eye	Above Eye	
4	Average Height	25	10	17	4.4	7.6	12.1
5		25	5	24	2.2	11.1	13.3
6		25	3	25	1.3	11.7	13.0
7		25	1	29	0.4	13.9	14.3
8		25	6	28	2.6	13.3	15.9
9		25	2	28	0.9	13.3	14.2
10		25	5	20	2.2	9.1	11.3
11		25	6	19	2.6	8.6	11.2
12		25	5	26	2.2	12.2	14.4
13							
14							
15	Average Deck Height						13.3
16	Big Rectangle Length	390					
17	Triangle 1 Length	34	17	8			
18	Triangle 2 Length	18	9				
19	Total Deck Length		416	ĵ	Total Deck	Square Feet:	5,529.1

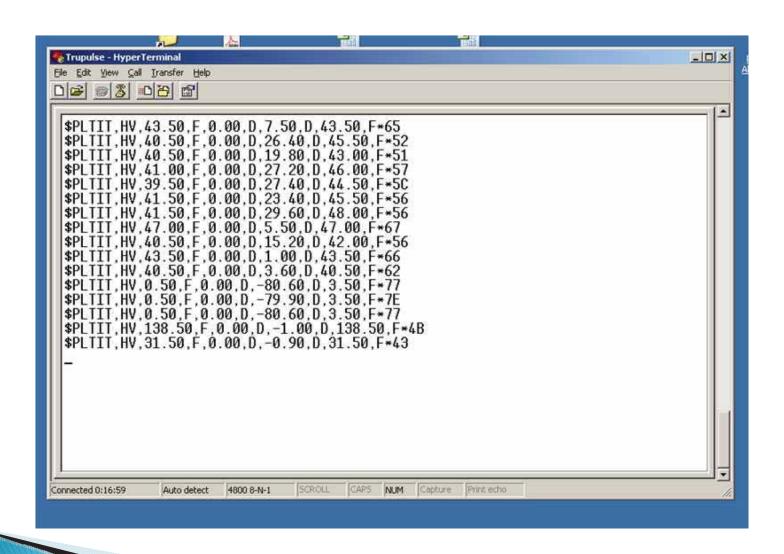
Need More Measurements

Constantly Changing

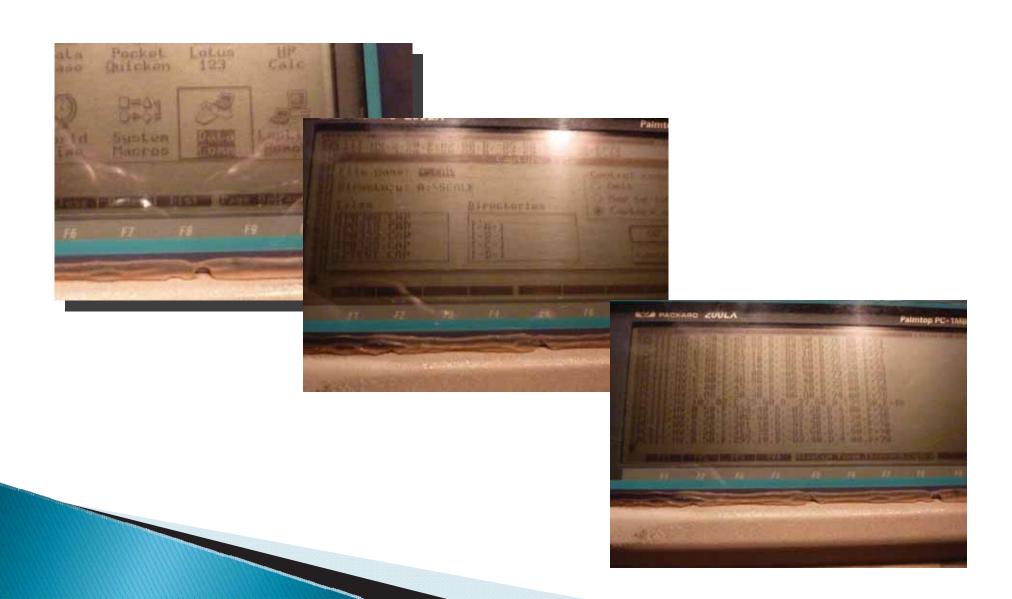
Inacceable

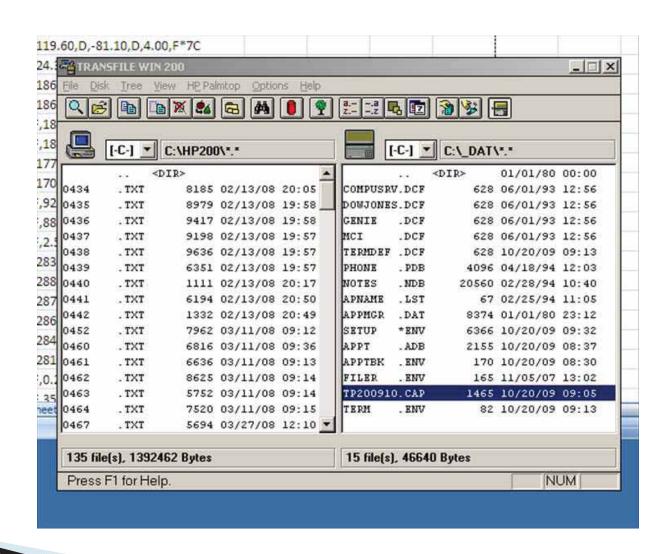

TruePulse360 Rangefinder


TP 360 - Nomad - GPS


The TP 360 appeared be the ultimate device for my project

Understand the Devices


TP360 Data Collection


Deck Measurement Tools

HP200 Data Comm

HP200 Data Collection

TruPulse Datastring in an Excel Sheet

	Cilbri	uatu					1.01	15		- 15	J LE	
	K5	1		·	0		f _x					
P	A	В	C	D	E	F	G	Н	I	1	K	L
1	SPLTIT	HV	18.5	F	14.5	D	-14.8	D	19	F*43		
2	SPLTIT	HV	18	F	13.1	D	-14.8	D	19	F*45		
3	SPLTIT	HV	18	F	11.6	D	-14.7	D	18.5	F*48		
4	\$PLTIT	HV	12.01	F	3.2	D	-15.4	D	12.01	F*78		
5	SPLTIT	HV	22.5	F	9.8	D	-9.5	D	23	F*43		
6	SPLTIT	HV	23.5	F	7	D	-7.7	D	23.5	F*4D		
7	SPLTIT	HV	26.5	F	7.5	D	-2.3	D	26.5	F*49		
8	SPLTIT	HV	24.01	F	4.1	D	-4.4	D	24.01	F*4F		
9	SPLTIT	HV	24	F	6.8	D	-4.9	D	24	F*49		
10	SPLTIT	HV	24	F	9.4	D	-4.8	D	24.5	F*4E		
11	SPLTIT	HV	17.01	F	13.6	D	-4.5	D	17.01	F*7F		
12	SPLTIT	HV	16	F	14.2	D	-3.8	D	16	F*76		
13	SPLTIT	HV	14.5	F	14.9	D	-4.6	D	14.5	F*74		
14	SPLTIT	HV	14	F	15.1	D	-5.7	D	14	F*7D		
15	SPLTIT	HV	15.01	F	15.2	D	-5.9	D	15.01	F*70		
16	SPLTIT	HV	24.01	F	17	D	-4.6	D	24.01	F*7E		
17	SPLTIT	HV	18.5	F	18.4	D	-3.8	D	18.5	F*7C		
18	SPLTIT	HV	28.5	F	349.9	D	-0.7	D	28.5	F*4A		
19	SPLTIT	HV	19.01	F	351.6	D	-3.8	D	19.01	F*40		
20	SPLTIT	HV	18.5	F	352.6	D	-3.9	D	18.5	F*42		
21	SPLTIT	HV	18.5	F	351.4	D	-4.1	D	18.5	F*4C		
22	SPLTIT	HV	18.01	F	349.1	D	-4.3	D	18.01	F*42		
23	SPLTIT	HV	16	F	347.4	D	-5.2	D	16	F*49		
24	SPLTIT	HV	5.5	F	9.9	D	-4	D	5.5	F*4E		
25	SPLTIT	HV	5.5	F	9.1	D	-4.2	D	5.5	F*44		
26	\$PLTIT	HV	5	F	6.9	D	-5.4	D	5	F*44		
27	SPLTIT	HV	5	F	4	D	-5.4	D	5	F*4F		
28	SPLTIT	HV	5	F	2.2	D	-4.9	D	5	F*47		
29	SPLTIT	HV	5	F	1.1	D	-4.9	D	5	F*47		
30	SPLTIT	HV	23.01	F	5.1	D	-4.9	D	23.01	F*43		
31	SPLTIT	HV	23.5	F	356.6	D	-2.6	D	23.5	F*48		
32	SPLTIT	HV	23	F	352.5	D	-2.9	D	23	F*40		

TP360 Worksheet

S5 LGTH	DOWN	UP	HEIGHT	SqFt
-	3.5	(3.5)	-	
14.0	3.5	6.0	9.5	67
8.0	3.5	5.5	9.0	74
23.0	3.5	(3.5)	-	104
TOTAL				244

S7 LGTH	DOWN	UP	HEIGHT	SqFt
-	5.5	(5.5)	_	
27.0	5.5	4.5	10.0	135
23.4	5.5	5.0	10.5	240
23.4	6.0	3.5	9.5	234
23.4	6.0	4.0	10.0	228
23.4	5.5	6.0	11.5	251
23.4	4.5	5.5	10.0	251
23.4	5.0	5.0	10.0	234
23.4	6.0	7.0	13.0	269
23.4	6.0	7.5	13.5	310
42.0	6.0	(6.0)	-	221
TOTAL				2,372

Voice Data Collection and HP200 on the Crane

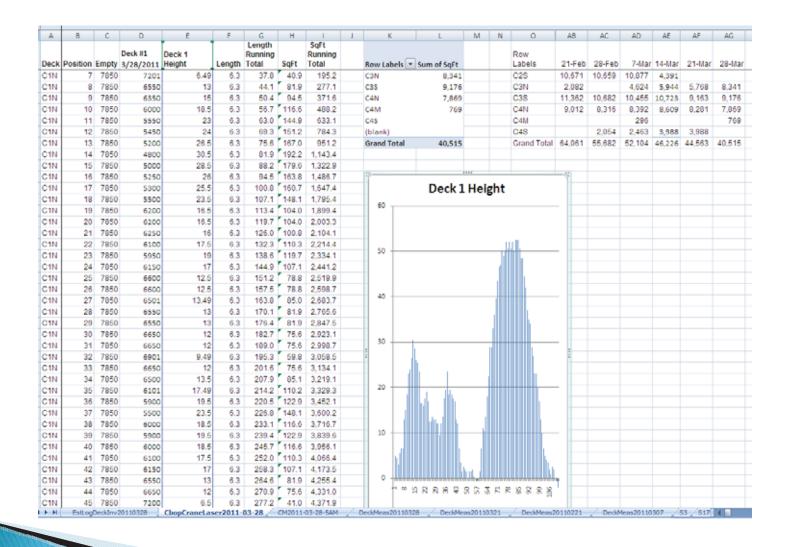
C1S NEW LGTH	DOWN	UP	HEIGHT	SqFt
-	4.0	(4.0)	-	
17.0	4.0	9.0	13.0	110.5
18.0	4.0	9.5	13.5	238.5
18.0	4.5	7.0	11.5	225.0
18.0	5.0	8.5	13.5	225.0
18.0	5.0	12.0	17.0	274.5
18.0	4.5	12.5	17.0	306.0
18.0	4.5	10.5	15.0	288.0
24.0	4.5	(4.5)	-	180.0
149.0				
TOTAL				1,847.5

CONSTRUCTION in 2009

C1S NEW			
73.0	8.0	8.3	66.2
71.5	9.5	8.3	78.6
68.0	13.0	8.3	107.6
69.5	11.5	8.3	95.2
67.0	14.0	8.3	115.9
69.5	11.5	8.3	95.2
70.0	11.0	8.3	91.1
68.0	13.0	8.3	107.6
68.0	13.0	8.3	107.6
65.5	15.5	8.3	128.3
65.5	15.5	8.3	128.3
68.5	12.5	8.3	103.5
66.0	15.0	8.3	124.2
64.0	17.0	8.3	140.7
66.5	14.5	8.3	120.0
65.5	15.5	8.3	128.3
70.0	11.0	8.3	91.1
73.5	7.5	8.3	62.1
COUNT	18.0		
Lgth	149.0		
Int	8.3		
SqFt			1,891.5

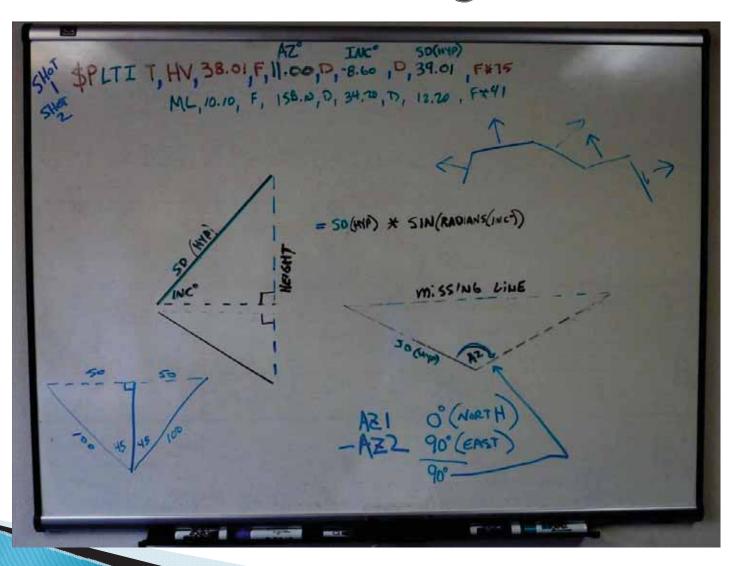
More is Better

44	1 1																													
	Cli	-4		4-	11-1-64	107: -141-	A								_											+	+	_	+-	+++
			Measuremen		Height	Width	Area							-								_		_	_	_	_			+
		Up+	Below Eye											_					_							_			_	\perp
47	12	15	5.3	6.7	12.0		0												!											
48			5.3	-	5.3		0																							
49	12		5.3	-	5.3		0																							
50	12		5.3	-	5.3		0																							
51	12		5.3	-	5.3		0																							
52	12		5.3	-	5.3		0																							\perp
53	12		5.3	-	5.3		0																							\perp
54	12		5.3	-	5.3		0																							\perp
55	12		5.3	-	5.3		0												40	45	40									\perp
56			5.3	-	5.3		0											36				36						\perp		\perp
57	12		5.3	-	5.3		0									7 30							\searrow	30	25			\perp		\perp
58			5.3	-	5.3		0							2	5/								_			24				\perp
59			5.3	-	5.3		0						_	0									_			\leq	22			\perp
60	12		5.3	-	5.3		0					14	1										_		_		$\sqrt{1}$	15		$\perp \perp \perp$
61	12		5.3	-	5.3		0				10												_		_		_	1	0	
62	12		5.3	-	5.3		0				5/												_	_		_	\perp	\rightarrow	1	7
63	12		5.3	-	5.3		0			2/	1												_	_		_	_		\rightarrow	3
64 65	12		5.3	-	5.3		0						_	_				L_	_	_	_	_	_	_	_	_	_	_	-	17
65	12		5.3	-	5.3		0		_	5 5	5 5) :	5	5	5 !	5 5	5	5	5	5	5	5	5	5	5	5	5	5	5 5	5 5
66	12		5.3	-	5.3		0		_		-			_	_	-						_	_	_	_	_	\perp			+
67	12		5.3	-	5.3		0							_	-										_	_	\perp	\perp		\perp
68	12		5.3	-	5.3		0				-				_	-										_	\perp	\perp		$\perp \perp$
69																														
70							0																							
71																														


Crane Operator Interface

Mounted a TP200

Crane Data

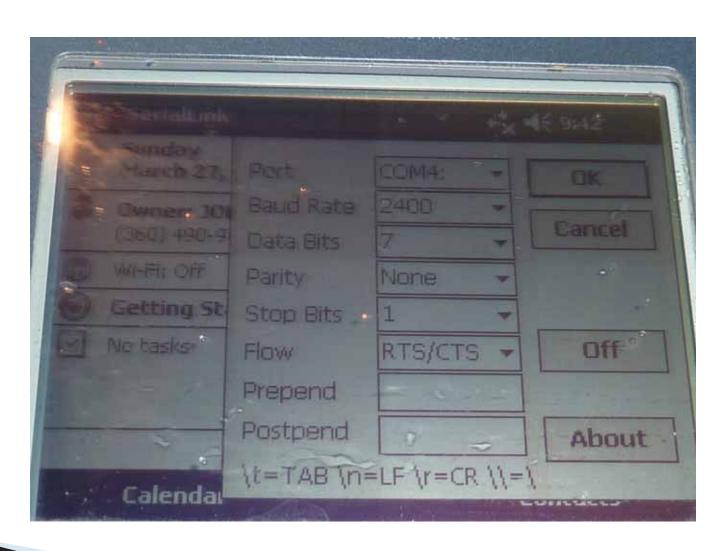


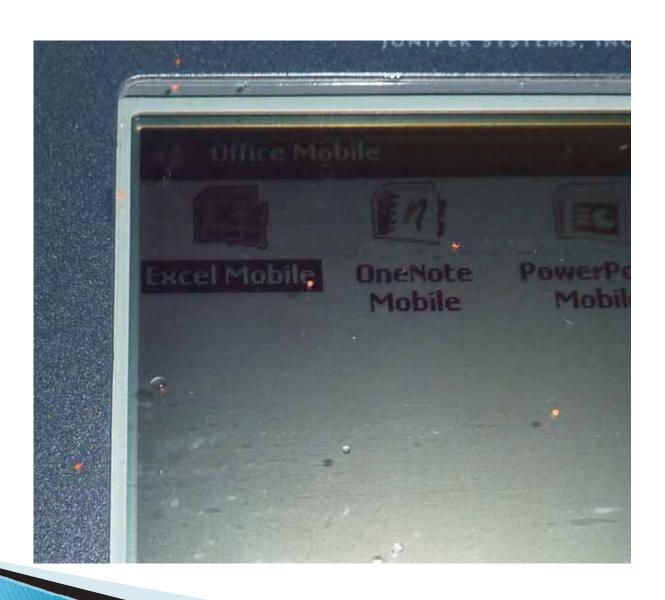
Crane Data

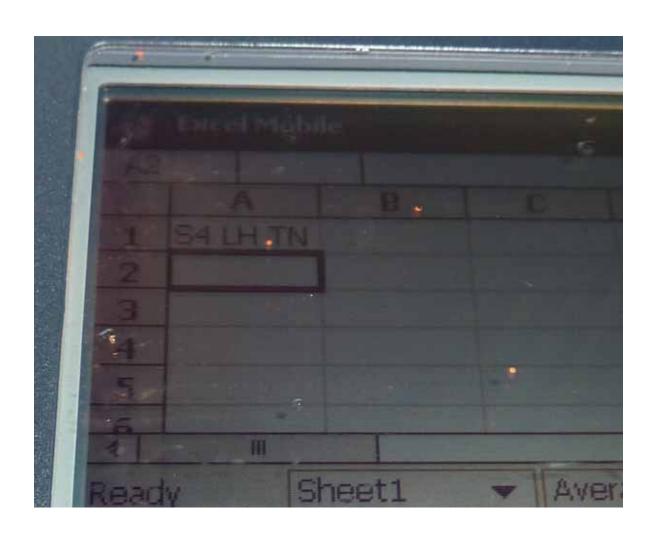
Α	В	С	D	Е	F	G	Н	1	J
			Deck #1	Deck 1		Length Running		SqFt Running	
Dock	Docition	Consusta.	Lon Innes	Hojobt	Leanneath	Total	CharlE4	Tatal	
Deck	Position	Empty	128/2011	neigiit	Length	TOTAL	SqFt	Total	
C1N	7	7850	-			37.8	40.9	195.2	
	7		7201	6.49	6.3				

N	0	AB	AC	AD	AE	AF	AG
	Row Labels	21-Feb	28-Feb	7-Mar	14-Mar	21-Mar	28-Mar
	C2S	10,671	10,659	10,877	4,391		
	C3N	2,082		4,624	5,944	5,768	8,341
	000	44.000	40.000	AN ACC	40.700	0.400	0.470

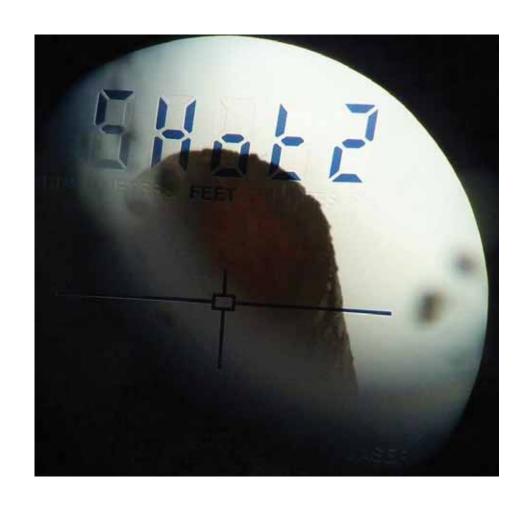
Understanding the Rangefinder Datastring


Allegro and TP360


Allegro with Bluetooth


Key Logger to Accept Data

Excel Mobile


Setup Spreadsheet

Measure Triangle Lengths

Fire the Laser

Measure Rectangle Lengths

Measure Rectangle Heights

Excel Data String

	٨	В	С	D	Е	F	G	Н			K	L	M	N	0	Р	Q
54 LH TN	A	В	C	U		AZ	G	INC	1	HYP	K	L	S4 LH TN	IN	0	P	ų
	f,244.50,d,17.30,d,26.00,f*56	\$pltit	hv	25.00	f	244.50	d	17.30	d	26.00	f*56		LGTH	DOWN	UP	HEIGHT	SqFt
	f,297.10,d,-5.80,d,44.00,f*4a	\$pltit	hv	44.00	f	297.10	d	-5.80	d	44.00	f*4a		LOTTI	DOWN	OI .	HEIGHI	Sqrt
	f,298.40,d,-19.20,d,36.90,f*6b	\$pltit	ml	34.80	f	298.40	d	-19.20	d	36.90	f*6b		_	(5.4)	5.4	_	
R1	.,250.10,4, 15.20,4,50.50,. 00	R1		203	Ė	250110	_	23120	_	20.20	. 52		34.80	(5.4)	7.8	13.2	229.8
	f,244.80,d,17.30,d,26.00,f*5b	\$pltit	hv	25.00	f	244.80	d	17.30	d	26.00	f*5b		39.4	(4.9)	4.6	9.6	449.1
	0,f,159.20,d,1.20,d,277.00,f*6b	\$pltit	hv	277.00	f	159.20	d	1.20	d	277.00	f*6b		39.4	(5.4)	5.5	10.9	403.0
	0,f,154.00,d,-0.40,d,276.10,f*51	\$pltit	ml	276.10	f	154.00	d	-0.40	d	276.10	f*51		39.4	(5.8)	4.2	10.0	411.6
rs		TS											39.4	(5.6)	3.3	8.9	372.6
pltit,hv,48.00,	f,328.10,d,8.90,d,49.00,f*6f	\$pltit	hv	48.00	f	328.10	d	8.90	d	49.00	f*6f		39.4	(6.5)	4.1	10.6	383.4
pltit,hv,29.50,	f,302.50,d,-2.40,d,29.50,f*48	\$pltit	hv	29.50	f	302.50	d	-2.40	d	29.50	f*48		39.4	(4.1)	6.9	11.0	424.4
pltit,ml,25.30,	f,178.30,d,-19.10,d,26.80,f*69	\$pltit	ml	25.30	f	178.30	d	-19.10	d	26.80	f*69		39.4	(4.5)	6.7	11.2	437.2
H0		H0											25.30	(4.5)	4.5	-	141.7
pltit,hv,25.00,	f,245.10,d,17.50,d,26.00,f*55	\$pltit	hv	25.00	f	245.10	d	17.50	d	26.00	f*55						
pltit,hv,28.00,	f,242.10,d,-10.90,d,28.50,f*72	\$pltit	hv	28.00	f	242.10	d	-10.90	d	28.50	f*72		TOTAL				3,252.9
pltit,hv,26.00,	f,250.20,d,10.10,d,26.50,f*57	\$pltit	hv	26.00	f	250.20	d	10.10	d	26.50	f*57						
pltit,hv,29.00,	f,242.40,d,-9.60,d,29.50,f*40	\$pltit	hv	29.00	f	242.40	d	-9.60	d	29.50	f*40						
pltit,hv,34.50,	f,254.40,d,9.00,d,35.00,f*6d	\$pltit	hv	34.50	f	254.40	d	9.00	d	35.00	f*6d						
pltit,hv,27.50,	f,248.80,d,-11.10,d,28.00,f*77	\$pltit	hv	27.50	f	248.80	d	-11.10	d	28.00	f*77						
pltit,hv,30.00,	f,249.60,d,8.00,d,30.00,f*66	\$pltit	hv	30.00	f	249.60	d	8.00	d	30.00	f*66						
pltit,hv,31.50,	f,242.50,d,-10.50,d,32.00,f*79	\$pltit	hv	31.50	f	242.50	d	-10.50	d	32.00	f*79						
	f,249.50,d,5.60,d,34.00,f*6e	\$pltit	hv	34.00	f	249.50	d	5.60	d	34.00	f*6e						
	f,245.60,d,-11.90,d,27.00,f*72	\$pltit	hv	26.50	f	245.60	d	-11.90	d	27.00	f*72						
	f,194.80,d,5.50,d,42.50,f*63	\$pltit	hv	42.50	f	194.80	d	5.50	d	42.50	f*63						
•	f,186.10,d,-6.10,d,61.01,f*42	\$pltit	hv	60.01	f	186.10	d	-6.10	d	61.01	f*42						
	0,f,169.70,d,3.10,d,127.50,f*6c	\$pltit	hv	127.50	f	169.70	d	3.10	d	127.50	f*6c						
	0,f,168.20,d,-1.50,d,155.50,f*43	\$pltit	hv	155.50	f	168.20	d	-1.50	d	155.50	f*43						
	0,f,166.30,d,2.20,d,175.50,f*65	\$pltit	hv	175.50	f	166.30	d	2.20	d	175.50	f*65						
	f,178.00,d,-4.00,d,64.01,f*40	\$pltit	hv	64.01	f	178.00	d	-4.00	d	64.01	f*40						

The Ultimate Test

Compare Crane Data to Handheld Data

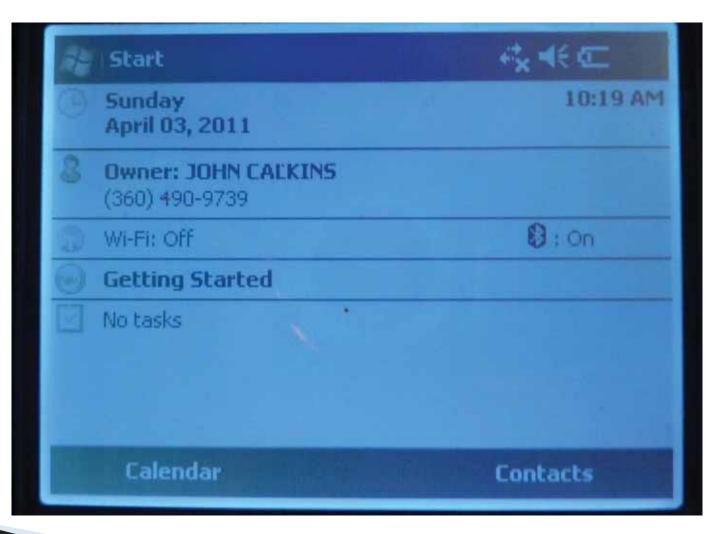
UIIV	JU	7000	2130	41	U.J	102.7	250. I	0,070.2	
C1N	31	7850	3100	47.5	6.3	189.0	299.3	5,972.4	
C1N	32	7850	3250	46	6.3	195.3	289.8	6,262.2	
C1N	33	7850	3450	44	6.3	201.6	277.2	6,539.4	
C1N	34	7850	3500	43.5	6.3	207.9	274.1	6,813.5	
C1N	35	7850	3701	41.49	6.3	214.2	261.4	7,074.8	
C1N	36	7850	3850	40	6.3	220.5	252.0	7,326.8	
C1N	37	7850	4150	37	6.3	226.8	233.1	7,559.9	
C1N	38	7850	4650	32	6.3	233.1	201.6	7,761.5	
C1N	39	7850	5050	28	6.3	239.4	176.4	7,937.9	
C1N	40	7850	5200	26.5	6.3	245.7	167.0	8,104.9	
C1N	41	7850	5750	21	6.3	252.0	132.3	8,237.2	
C1N	42	7850	6201	16.49	6.3	258.3	103.9	8,341.1	
C1N	43	7850	6450	14	6.3	264.6	88.2	8,429.3	
C1N	44	7850	6750	11	6.3	270.9	69.3	8,498.6	
C1N	45	7850	6950	9	6.3	277.2	56.7	8,555.3	
C1N	46	7850	7350	5	6.3	283.5	31.5	8,586.8	
C1N	47	7850	7150	7	6.3	289.8	44.1	8,630.9	
C1N	48	7850	7100	7.5	6.3	296.1	47.3	8,678.1	4
	19	7850	7/150	1	ßЗ				

C1N MH	TN				
LGTH	DOWN	UP	HEIGHT	SqFt	
-	(6.0)	6.0	-		
103.30	(6.0)	40.5	46.5	2,400.8	
20.0	(6.0)	40.6	46.6	932.6	
20.0	(5.7)	41.5	47.2	939.9	
20.0	(5.4)	41.8	47.1	945.2	
20.0	(5.5)	36.4	41.9	892.2	
20.0	(5.1)	37.7	42.7	848.2	
78.30	(5.1)	5.1	-	1,673.3	
TOTAL				8,632.1	

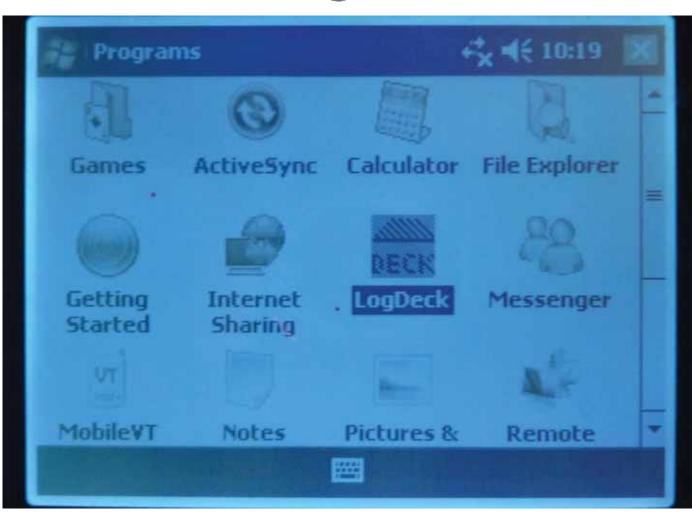
Now What?

- 1. I'm able to capture the data into my handheld device for my use.
- 2. I'm able to hand the Laser for either voice or direct data collection to a Accountant that does not have any experience and get the same results.
- 3. I'm able to recognize that I'm the only one willing to do all of this each week.

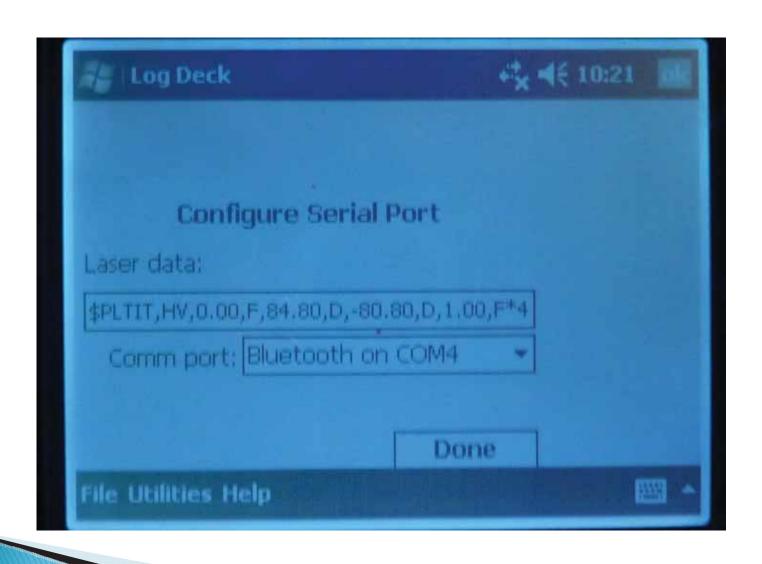
Consistent Measurements



TruePulse to the Rescue


UNDER
CONSTRUCTION

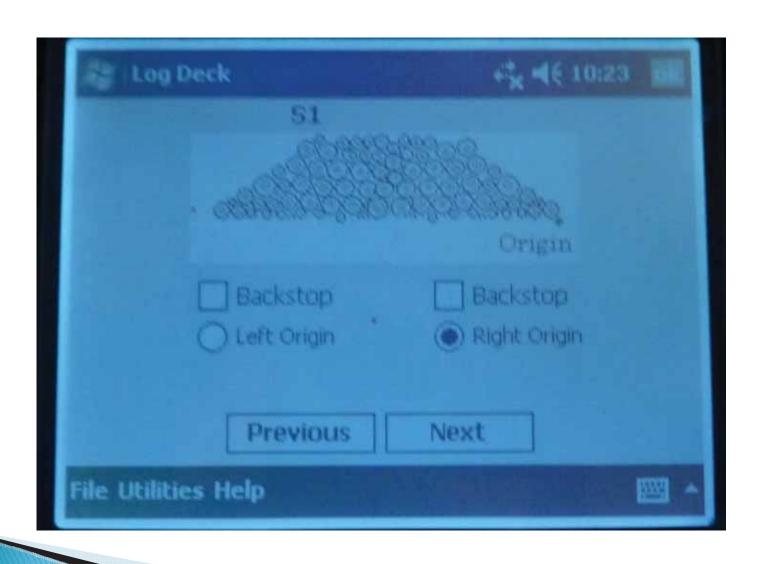
Turn on Bluetooth or Tether with Serial Cable

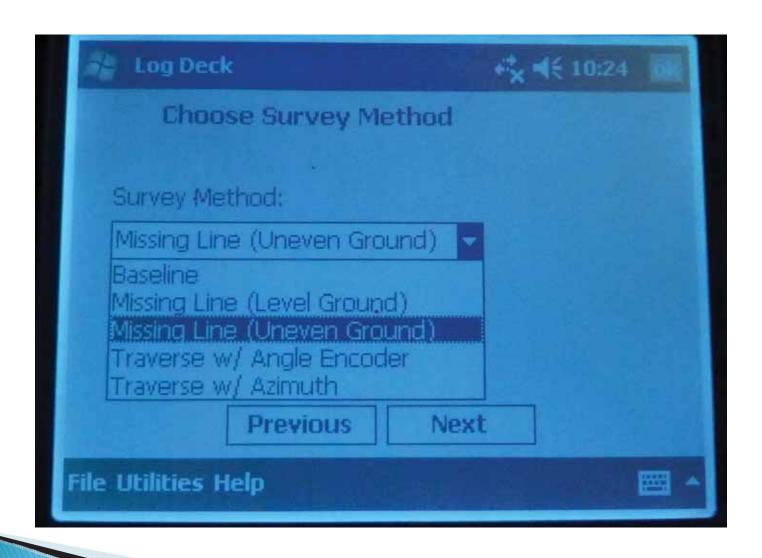

Start the TruePulse LogDeck Program

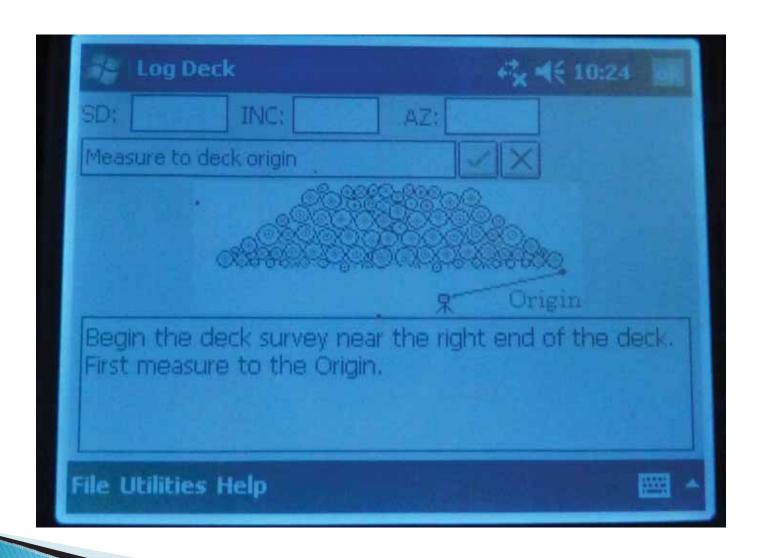
Select Utilities

Select the Comm Port and Test Fire

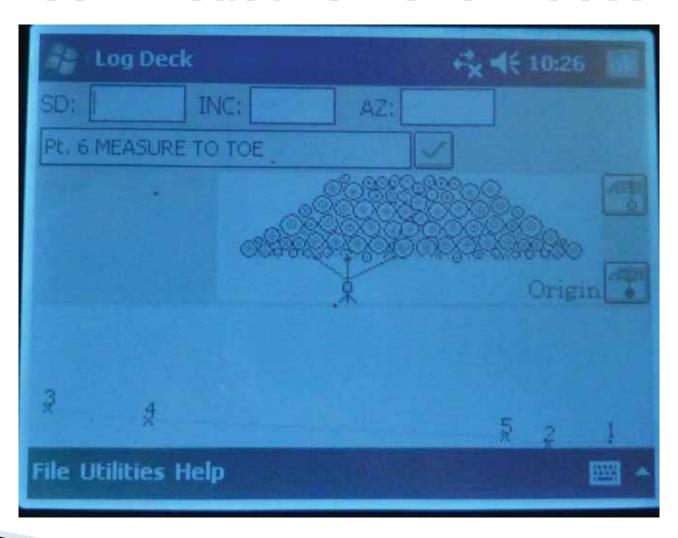
Select New Job

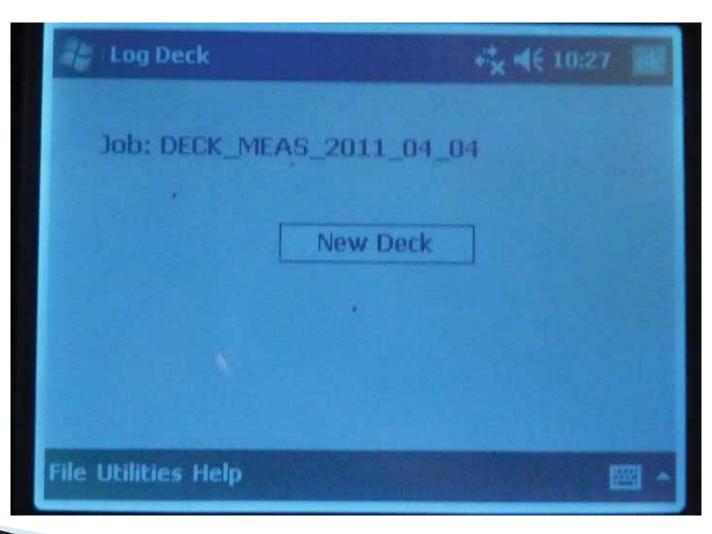

Create a Job Name and Id

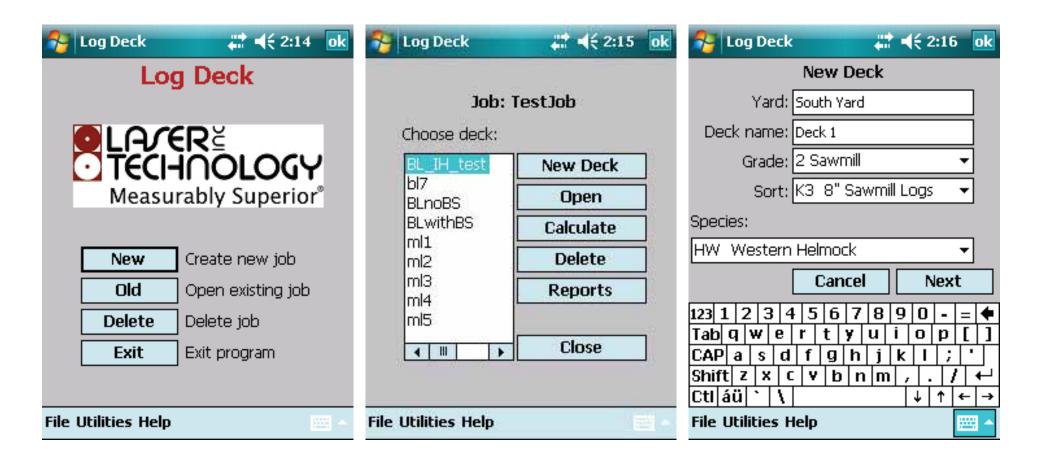

The Grade Sort and Species are Customizable

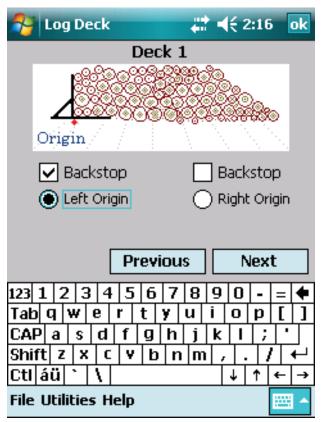

Select Orentation

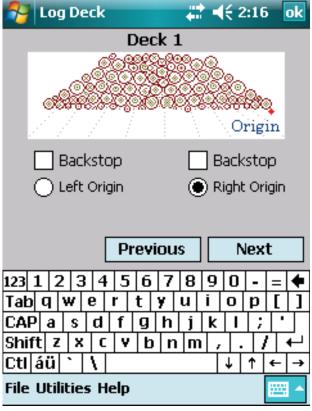
Select Measurement Method

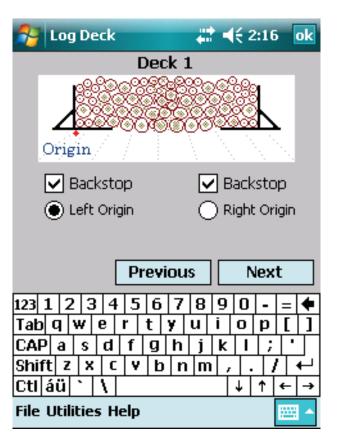

Fire the Laser

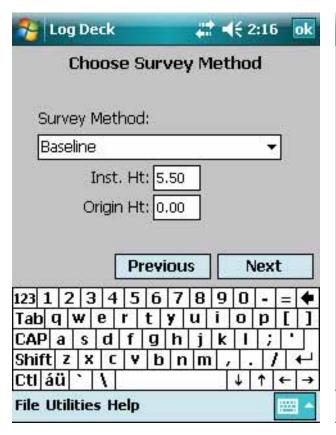

The Data String is accepted into the Program

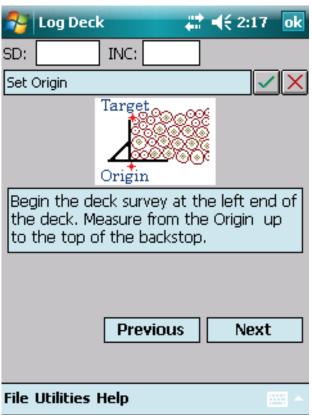

The Program walks you through the Deck Measurement Process

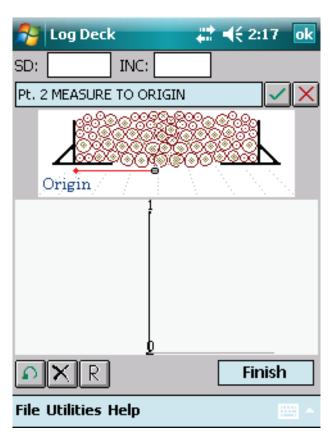


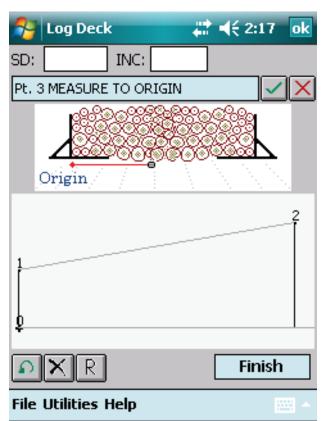

You have control over the individual deck data

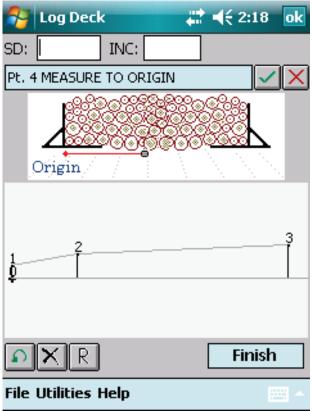


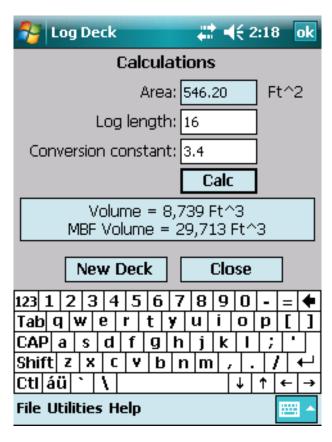

Last Minute Program Update

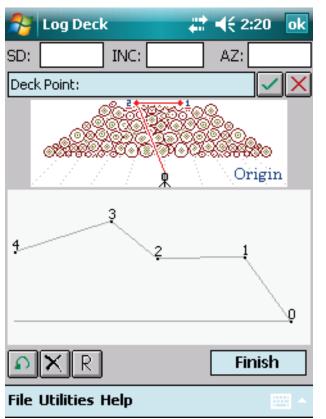


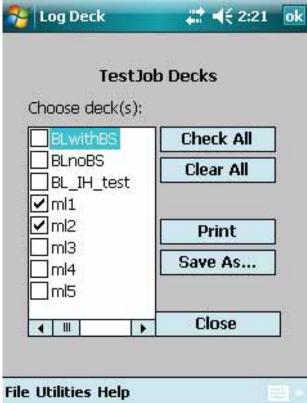












What Have I learned?

- Note that the second of the
- 2. We have to develop the procedures that are repeatable and acceptable.
- We need to be persistent and be able to explain what is needed for others to utilize what we have learned.

END

Calkins 4/7/2011